Managing Devices

This section describes how to manage devices in IoT FND, and includes the following topics:

Overview

Use the following IoT FND pages to monitor, add and remove devices, and perform other device management tasks that do not include device configuration.

Procedure


Select DEVICES > FIELD DEVICES.

In the Browse Devices panel of the Devices menu options as shown below, search for Field Devices such as Routers (CGR1000, IR800, SBR (C5921), IR1100 Pluggable and Expansion Modules (IR-1100-SP), Endpoints (meters and IR500 gateways), and IoT Gateways (such as the LoRaWAN gateway and IC3000).

Note

 

In some textual displays of the IoT FND, routers may display as “FAR” rather than the router model (cgr1000, etc).

Note

 

You can view PID and descriptive properties for the IR1100 pluggable and expansion modules in the IoT FND UI at the Cellular Link Settings page; however, you must refer to the NB API for properties and metrics for the pluggable and expansion interfaces, specifically the getMetricHistory () and getDeviceDetails ().

  • To work with Head-End Routers (ASR1000, ISR3900, ISR4000, C8000) use the DEVICES > Head-End Routers page.

  • To work with IoT FND NMS and database servers, use the DEVICES > Servers page.

  • To view assets associated with the Cisco Wireless Gateway for LoRaWAN (IXM-LPWA-900), use the DEVICES > Assets page.

Note

 

Refer to the Managing Firmware Upgrades chapter for more information on firmware updates for Routers and Gateways.


Guided Tours


Note


The Guided Tour feature must be enabled by the first-time FND root user that logs into the FND system before you can use the feature.


Procedure


Step 1

At first login, as a root user, click Dashboard. A No Devices or Dashlets panel appears, which displays the following options: ADD LICENSE, ADD DEVICES, ADD DASHLET and GUIDED TOUR.

Step 2

Click GUIDED TOUR.

Note

 

You may need to add a license or create a dummy device to enable the Guided Tour.

Step 3

At the root user menu (upper-right corner) that appears, select Guided Tour. This opens a Guided Tour Settings window that lists all available Guided Tours:

  • Add Devices

  • Device Configuration

  • Device Configuration Group Management

  • Tunnel Group Management

  • Tunnel Provisioning

  • Provisioning Settings

  • Firmware Update

  • Zero Touch Provisioning Setup Guided Tour

Step 4

After you select one of the Guided Tours, you will be redirected to the Sign In pane. That configuration page and windows appear to step you through the configuration steps and let you Add or Update Values as necessary.

Note

 

When you select the Zero Touch Provisioning option list in step 3 above, a Zero Touch Provisioning setup guided tour window appears that lists all the prerequisites for the device on-boarding: (Provisioning Settings, Group Management, Manage Configuration: Bootstrap Template, Tunnel Provisioning, Device Configuration, Add Devices).


Enabling Google Snap to Roads

When navigating with GPS, sometimes the trace or coordinates do not always match up to the road or path traveled by a vehicle.

When you enable the Snap to Roads feature in IoT FND, it eliminates the wrong latitude and longitude coordinates collected along a route and replaces it with a set of corresponding data with points that snap to the most likely roads and similar road names that the vehicle has traveled along.

The Google Snap to Roads feature is a premium service, and to work with the feature you must enable the Google Map API Key within IoT FND user interface.

Setting Preferences for the User Interface

You can define the preference settings to customize the user interface. The Preferences option is located in the right upper-top corner of the UI.

Table 1. User Preference Settings
Options Description

Show chart on events page

Displays the device events in chart for the current day.

To view the chart, go to the OPERATIONS > Events page.

Show summary counts on events/issues page

Displays the summary of the device events and issues, based on the severity level, in the left pane.

To view events, go to OPERATIONS > Events page.

To view issues, go to OPERATIONS > Issues page.

Enable map

Displays the Map tab in the DEVICES > Field Devices and the OPERATIONS > Issues pages.

Default to map view

Sets the Map tab as the default view in the DEVICES > Field Devices and the OPERATIONS > Issues pages.

Note

 

To use this option, you must check the Enable Map check box.

Show device type and function on device pages

Displays the device types in the left pane and device function tabs in the right pane of the Device Listing page.

Show labels and counts on device list pages

Displays the device status and count for each device type in the left pane of the Device Listing page.

Display Device Categories on Issues Status bar

The Issues Status bar located in the right-lower end of the user interface displays the device issues for all the device categories. However, you have the option to select the device category as per the requirement.

  • Routers

  • Endpoints

  • Head End Routers

  • Servers

Show Device Password

The Show Device Password option is available only for the root users and the user with permission "Manage Device Credentials". For other users, this option is not available.

By default, this option is not selected. Check the Show Device Password check box and click Apply to view the device credentials under Config Properties tab in the Device Details page.

Show PAN ID in hexadecimal

Displays the PAN ID in hexadecimal in the Device Listing page.

Managing Routers

You manage routers on the Field Devices page (DEVICES > Field Devices). Initially, the page displays devices in the Default view.

Working with Router Views

The router or routers you select determine which tabs display.


Note


Listed below are all the possible tabs. You can select to view the Map option from the List view.


Each of the tab views above displays different sets of device properties. For example, the Default view displays basic device properties, and the Cellular-GSM view displays device properties particular to the cellular network.

For information on how to customize router views, see Customizing Device Views.

For information about the device properties that display in each view, see Device Properties.

For information about common actions performed in these views (for example, adding labels and changing device properties), see Common Device Operations.

Viewing Routers in Map View

At the top, upper-right-hand corner of the screen, select root or user name, and click Preferences option. To view the routers in Map view, select the Enable map checkbox.

Figure 1. Setting User Preferences for User Interface Display

Note


The additional options (not seen in the Setting User Preferences for User Interface Display) are found as selectable options on the User Preferences page (Servers, Show PAN ID in Hexadecimal).

To view the routers in the Map view, navigate to DEVICES > FIELD DEVICES, choose the router and click Map.

Figure 2. Map View

Note


You can view any RPL tree by clicking the device in Map view, and closing the information pop-up window.

The RPL tree connection displays data traffic flow as blue or orange lines, as follows:

  • Orange lines indicate that the link is an uplink: data traffic flows in the up direction on the map.

  • Blue lines indicate that the link is a downlink: data traffic flows in the down direction on the map.

Refreshing Router Mesh FFN Key

Using the Refreshing Router Mesh FFN Key option, you can refresh the mesh key of CGR1000 or IR8100 for the Fully Functional Nodes (FFN) such as IR500 and L+G devices (lgnn and lgelectric). The router mesh key is refreshed if you suspect unauthorized access attempts to a router or to avoid device downtime when they expire.


Note


FND refreshes the mesh keys automatically when the refresh time is reached.

To refresh the router mesh FFN key:

Procedure


Step 1

Choose DEVICES > FIELD DEVICES > Browse Devices tab.

Step 2

Select CGR1000 or IR8100 routers from the left pane.

Step 3

Check the check boxes of the routers to refresh in the right pane (default view).

Step 4

Choose More Actions > Refresh Router Mesh FFN Key from the drop-down list.

Step 5

Click Yes to continue.

Alternatively, you can refresh the mesh key of CGR1000 or IR8100 from the Devices Details page using the Refresh Router Mesh FFN Key button.


Device File Management for Routers

When you want to upload router device files to be managed by IoT FND, go to CONFIG > DEVICE FILE MANAGEMENT within the application. At that page, select Actions > Upload to get to the Upload File to Routers page. This page provides you the ability to:

  • Search for a router device file by its name such as CGR1120/K9+JAF1648BBCK to upload.

  • Search by an abbreviated Device file string such as CGR120/K9+JAF or BBCK to display a range of routers available to upload.

The number of router files available to upload (based on your search criteria) displays and all listed routers are selected (checked boxes) by default. You can define the number of routers that display, by using the drop-down menu on that page. Options are 10 (default), 50, 100 and 200. You can remove the check mark next to any router, that you do not want to upload.

After you have finalized the list to upload, click Upload.

Managing Embedded Access Points on Cisco IR829 ISRs

IoT Field Network Director allows you to manage the following embedded access point (AP) attributes on and IR829 ISRs. The embedded Access Points on the IR829 routers are identified as AP800 in the FND user interface.


Note


IoT Field Network Director can only manage APs when operating in Autonomous mode.


You can perform and manage the following aspects for AP800s in FND:

  • Discovery

  • AP configuration

  • Periodic inventory collection

  • Firmware update of APs when operating in Autonomous Mode

  • Event Management over SNMP


Note


Not all IR800 routers have embedded APs. . The IR829 ISR features matrix is here.

Setting AP800 Firmware Upgrade Support During Zero Touch Deployment (ZTD)

You must define a specific firmware image to use during ZTD.

You can only define a unified image (k9w8 - factory shipped) for update via ZTD

Defining the Unified Mode Option


Note


Setting the AP to the unified mode, requires that the following configuration be pushed by IoT FND to the router (IR800), from the router config template, after that management of the AP is done from the Cisco Wireless LAN Controller (WLC) and not from IoT FND:

Procedure


Step 1

At the CONFIG > DEVICE CONFIGURATION page, select Default-ir800 from the Groups panel and select the Edit AP Configuration Template tab.

Step 2

To perform an Unified Upgrade, enter the following configuration in the Edit AP Configuration Template window (right-pane):

ip dhcp pool embedded-ap-pool
network <router_ip> 255.255.255.0 
dns-server <dns_ip> 
default-router <router_ip> 
option 43 hex f104.0a0a.0a0f (single WLC IP address(10.10.10.15)
in hex 
format) 
ip address <router_ip> 255.255.255.0 
! 
service-module wlan-ap 0 bootimage unified

Step 3

Click the Disk icon at the bottom of the panel to save the configuration.

Step 4

At the Router Device Details page, when you select the Embedded AP tab, the pane displays “Unified access points are not managed.” because they are being managed by the Cisco Wireless LAN Controller and not IoT FND.


Using Router Filters

To refine the list of displayed routers, use the built-in router filters under ROUTERS in the Browse Devices pane or saved custom searches in the Quick View pane (right pane). For example, to display all operational routers, click the Up group under ROUTERS in the Browse Devices pane. Click a filter to insert the corresponding search string in the Search Devices field. For example, clicking the Up group under ROUTERS inserts the search string status:up in the Search Devices field.

Displaying Router Configuration Groups

At the DEVICES > Field Devices page, use the Browse Devices pane to display routers that belong to one of the groups (such as CGR1000) listed under ROUTER.

Displaying Router Firmware Groups

Procedure


Step 1

At the CONFIG > Firmware Update page, select the Groups tab (left pane) and then choose one of the ROUTER Groups (such as Default-cgr1000, Default-esr5900, Default-ir1100, Default-ir800 or Default-sbr).

Step 2

The firmware image available for the router displays under the Name field in the right-pane. In the case of the Default-ir800, it includes both the IR809 and IR829, so there are two different firmware images listed.


Displaying Router Tunnel Groups

Use the Browse Devices pane to display the router devices that belong to one of the groups listed under ROUTER TUNNEL

Managing Endpoints

To manage endpoints, view the DEVICES > Field Devices page. By default, the page displays the endpoints in List view.

Viewing Endpoints in Default View

When you open the DEVICES > Field Devices page in Default view, IoT FND lists All FAN Devices such as Routers, Endpoints (meters, gateways), and IoT Gateway and their basic device properties.

When you select an ENDPOINT device or group in the Browse Devices pane, IoT FND provides tabs to display additional endpoint property views:


Note


Listed below are all the possible tabs (left to right as they appear on the screen).


Each one of these views displays a different set of device properties.

For information on how to customize endpoint views, see Customizing Device Views.

For information about the device properties displayed in each view, see Device Properties.

For information about the common actions in these views (for example, adding labels and changing device properties) that also apply to other devices, see Common Device Operations.

Viewing Mesh Endpoints in Map View

To view mesh endpoints in Map view:

Procedure


Step 1

Select Enable map in <user>> Preferences.

Step 2

Click the Map tab.


Blocking Mesh Devices to Prevent Unauthorized Access

If you suspect unauthorized access attempts to a mesh device (mesh endpoint, IR500), you can block it from accessing IoT FND.


Caution


If you block a mesh endpoint, you cannot unblock it using IoT FND. To re-register the mesh endpoints with IoT FND, you must escalate and get your mesh endpoints administrator involved.


To block a mesh endpoint device, in Default view (DEVICES > Field Devices > ENDPOINTS).

Procedure


Step 1

Check the check boxes of the mesh devices to refresh.

Step 2

Choose More Actions > Block Mesh Device from the drop-down menu.

Note

 

If your mesh endpoints are running Cisco Resilient Mesh Release 6.1 software or greater, FND will automatically invoke the Blacklist for endpoints (cg-mesh, IR509, IR510, IR529, IR530) that you suspect are not valid endpoints with the WPAN. You do not need to select More Actions > Block Mesh Device. Additionally, the mesh endpoint will show a ‘blocked’ status.

Step 3

Click Yes in the Confirm dialog box.

Step 4

Delete the mesh endpoint from the NPS server to prevent the device from rejoining the mesh network.


Displaying Mesh Endpoint Configuration Groups

You can view available defined configuration groups for mesh endpoints at the CONFIG > Device Configuration page.

Displaying Mesh Endpoint Firmware Groups

You can use the Browse Devices pane to display the mesh endpoint devices that belong to one of the groups listed under ENDPOINTS.

Troubleshooting On-Demand Statistics for Endpoints

You can generate any of the following predefined system reports within IoT FND to help troubleshoot issues with an endpoint such as GATEWAY-IR500, EXTENDER-IR500, METER-CGMESH, or any third-party METERS. A Troubleshoot page is displayed for each supported endpoint.

Report Description

All TLVs

Generates a report from the list of available TLV identifiers in the device.

Connectivity

Generates a device connectivity report with the following parameters:

  • WPAN Status

  • PPP Link Stats

  • Neighbor 802.15.4g

General

Generates a report with the following general parameters associated to the device:

  • TLV Index

  • Device ID

  • Current Time

  • Uptime

  • IEEE 802.1x Status

  • IEEE 802.1x Settings

  • Firmware Image Information

Registration

Generates a report with the following registration parameters:

  • Network Management System Redirect Request

  • Report Subscribe

  • Connected Grid Management System Settings

  • Connected Grid Management System Status

  • Connected Grid Management System Notification

  • Connected Grid Management System Stats

  • Signature Certificate

  • Signature Settings

Routing

Generates a report with the following routing parameters:

  • IP Address

  • RPL Settings

  • IEEE 802.11i Status

  • DHCPv6 Client Status

  • IEEE 802.15.4 Beacon Stats

  • Stored Information

  • Fast Synchronization Status

  • RPL Stats

To generate a troubleshooting report for endpoints:

  1. Choose DEVICES > Field Devices > Browse Devices tab > ENDPOINT .

  2. Click the device on the right pane to view the device information.

  3. On the Device Info page, click the Troubleshoot tab.

  4. Under the Get Report section of the Troubleshoot page, select the report type. The troubleshooting report types available are All TLVs, Connectivity, General, Register, and Routing.


    Note


    Based on the report type selected, the check boxes are auto-selected on the Troubleshoot page; indicating that the report displayed is only for the selected parameters.


  5. Click Get Report. A report appears on the Report Output page.

  6. Click the Report icon to export the report in CSV format. The following figure displays a troubleshooting report generated for General report type.

Table 2. Feature History
Feature Name Release Information Description

Troubleshooting On-Demand Statistics for Endpoints

IoT FND 4.8

You can generate predefined system reports within IoT FND to help troubleshoot issues with endpoints such as GATEWAY-IR500, EXTENDER-IR500, METER-CGMESH, or any third-party METERS. A Troubleshoot page is displayed for each supported endpoint.

Managing Out-of-Service Devices

The Out-of-Service (OOS) device state marks the end of life of a device in Cisco IoT FND. The end of life of a device is a result of meter or module change, withdrawal from services, or deletion of device from router, endpoint, or gateway. The OOS state is applicable for devices in routers, endpoints, and gateways managed by IoT FND. The OOS devices have the characteristics of both Managed and Unmanaged device status. The OOS devices do not consume license; however, the devices need license to exist in FND. The OOS state is applicable only for the classic license in FND and not for the smart license.


Note


If there is no license available for the same device type, then the OOS devices move to Unmanaged state based on priority while adding new devices.


Table 3. Feature History
Feature Name Release Information Description

Out-of-Service (OOS) device state

IoT FND 4.8

The OOS device state marks the end of life of a device in Cisco IoT FND. The end of life of a device is a result of meter or module change, withdrawal from services, or deletion of device from router, endpoint, or gateway.

Managing OOS Devices Using CSV — IoT FND UI

This section explains how you can add, update, or delete OOS devices using a CSV file and the subsequent impact on the license count during the process.


Note


The devices should have "outofservice" status in the CSV file to perform any action such as add, update, or delete in IoT FND.


Adding OOS Devices Using CSV — IoT FND UI

Using the CSV file, we can add OOS devices into IoT FND. The OOS devices do not consume license, however, the license should be available for them to exist in FND.


Note


If the license is unavailable, then the OOS devices move to Unmanaged status.


To add OOS devices:

Procedure

Step 1

Choose DEVICES > Field Devices > Browse Devices .

Step 2

Click Add Devices button on the right pane to add devices of router, endpoint, or gateway.

Step 3

Click Browse to locate the csv file that has the OOS devices.

Step 4

Click Open.

Step 5

Click Add.

Step 6

Click Close when done.


Updating Device Status Using CSV — IoT FND UI

You can update any device state to OOS state using the Change Device Properties option. This action frees up the license count for adding new devices.


Note


You cannot move Unmanaged devices to OOS state.


To update OOS devices:

Procedure

Step 1

Choose DEVICES > Field Devices > Browse Devices .

Step 2

On the right pane, choose Bulk Operation > Change Device Properties.

Step 3

Click Browse to locate the CSV file.

Step 4

Click Open.

Step 5

Click Change to change the existing device status to Out of Service status.

Step 6

Click Close when done.


Deleting OOS Devices Using CSV — IoT FND UI

Deleting OOS devices does not change the license count.

To delete OOS devices:

Procedure

Step 1

Choose DEVICES > Field Devices > Browse Devices .

Step 2

On the right pane, click Bulk Operation > Remove Devices.

Step 3

Click Browse to locate the CSV file containing the list of devices (in OOS status) to delete.

Step 4

Click Open.

Step 5

Click Remove.

Step 6

Click Close when done.


Managing OOS Devices Using CSV — IoT FND NB API

You can add, update, or delete OOS devices using IoT FND NB API using the CSV file. The NB API used is SOAP (Simple Object Access Protocol) UI.


Note


The devices should have "outofservice" status in the CSV file to perform any action such as add, update, or delete in IoT FND.


  • Adding OOS devices does not consume license. However, license should be available for the devices. If there is a request for adding new devices, then the devices in OOS state move to Unmanaged state on priority to accommodate new devices.

  • Updating a device state to OOS state frees up the license count. You can update any Managed device state to OOS state. But this action prompts for license enforcement and reinstatement.

  • Deleting OOS devices does not change the license count.

For more information, refer to the topic, Add, Update, or Delete OOS Devices Using CSV — IoT FND NB API.

Add, Update, or Delete OOS Devices Using CSV — IoT FND NB API

To add, update, or delete OOS devices:

Procedure

Step 1

Open the IoT FND NB API (SOAP UI:https://www.soapui.org/).

Step 2

From the Soap menu, select New Soap Project.

Step 3

In the New SOAP Project window, provide the following information:

  • Project Name.

  • Click Browse to locate the Initial WSDL (Web Services Description Language).

  • Check the Create Requests check box.

Step 4

Click OK when done.

The Projects tree on the left pane lists the available APIs.

Step 5

Right-click one of the following API options and select NewRequest:

  1. addDevices — To add OOS devices.

  2. updateDevices — To update device status to OOS.

  3. removeDevices — To delete OOS devices.

Step 6

In the New Request window, enter the request name and click OK.

An XML window appears on the right pane.

Step 7

Click SoapUI log on the right lower pane.

Add Authorization window appears.

Step 8

Select the Authorization type as Basic and click OK.

Step 9

Enter Username, Password, and Domain details.

Step 10

Click Attachments tab.

Step 11

Click + icon to locate the CSV file containing the list of OOS devices.

You can perform one of the following actions:

  1. Add — Select the CSV file to add OOS devices to FND.

  2. Update — Select the CSV file to update the device state as OOS in FND.

  3. Delete — Select the CSV file to delete OOS devices from FND.

Step 12

Click Open.

Step 13

In the confirmation box, click Yes.

Step 14

Select the Part Number.

Step 15

In the XML file, provide the following information:

  • Update the filename (copy the .csv filename from the Name field).

  • Enter root as username.

  • Update the HTTPS URL with FND IP details.

Step 16

Click the green arrow on the left top corner to send the request.

Step 17

On successful completion of the NB API request, SoapUI shows a Job ID on the right side of the pane.

Refresh FND UI. You can view the list of OOS devices based on the operation performed.


Managing License for OOS Devices

This section explains how the license is managed for OOS devices in IoT FND.

Action Description

Adding a license file

There is no change in the license count, as OOS devices do not consume the license.

The devices in Managed status are given priority while adding the license file. The license consumed by them are displayed on the License Summary page.

To know more about adding a license file, refer to Adding License Files

Removing a license file

Changes the device status from OOS to Unmanaged.

Note

 
On re-adding the license, the devices move back to OOS status.

To know more, refer Deleting the License Files.

License expiry

OOS devices move to Unmanaged status on priority.

License summary page

OOS devices do not consume license, hence they are not displayed on the summary page.

To know more about viewing the license summary page, refer to Viewing License Summary.

Registration

IoT FND accepts registration or tunnel provisioning request from OOS devices, but consumes license.

Tunnel Provisioning

Periodic or on-demand Metric Refresh

If there is a periodic or on-demand metric refresh request from OOS devices, then the request is dropped.

SNMP Trap Processing

The SNMP trap request is not processed for OOS devices. The user is notified with DEBUG and INFO level message on FND server.log.

Deleting OOS devices

You can delete OOS devices directly from the Device Info page, but this action does not change the license count.

DEVICES > Field Devices > Browse Devices > Devices > More Actions > Remove Devices.

Supported Actions for OOS Devices

Cisco IoT FND enables you to ping and traceroute OOS devices of router, endpoint, or gateway on the Device Info page (DEVICES > Field Devices > Browse Devices).

Restrictions for OOS Device Actions

The following actions are not supported for OOS device state:

  • In the Device Info page, you can ping or traceroute OOS devices like any other device state. However, the actions such as Refresh Metrics, Reboot, Sync Config Membership, Sync Firmware Membership, Block Mesh Device, Erase Node Certificates, or Create Work Order are not supported.

  • In the CONFIG > DEVICE CONFIGURATION page, when you use Push Configuration option on OOS devices, an error message appears.

  • In the CONFIG > Firmware Update page, when you use the upload or install image option on OOS devices, an error message appears.

  • In the CONFIG > Device File Management page, if the upload file contains OOS devices, an error message appears.


    Note


    You are not allowed to delete the existing file that has OOS devices now.


Viewing Events and Audit Trails for OOS Devices

  • In the Operations > Events page, you can view only existing events for the OOS devices. The generated event provides information on when the device moved to OOS state.


    Note


    You cannot generate events for the devices that are currently in OOS state.



    Note


    The Get Report option (in the Troubleshoot tab) is not supported for OOS devices.


    To filter existing OOS device events, refer to Viewing OOS Devices Using Filters.

  • In the ADMIN > System Management > Audit Trail page, you can view the audit trail for OOS devices. The audit trail provides information on when the device moved to OOS state from Managed state and the other way round.

Viewing OOS Devices Using Filters

You can view the events generated for OOS devices using the filter option.

Procedure


Step 1

Choose OPERATIONS > Events.

Step 2

Click Show Filter option.

  1. Select Event Name from the first drop-down list.

  2. Select Out of Service option from the third drop-down list.

  3. Click + icon to add the event name selected.

Step 3

Click the search icon.

The OOS device events are displayed.

Note

 

You can also customize your search using the Custom Time Filter drop-down list on the left pane. This option allows you to filter events based on relative or absolute time.


Managing Itron Bridge Meters

An Endpoint Operator can manage Itron Bridge Meters such as ITRON30 as a cg-mesh device type (METER-CGMESH) using IoT-FND. This meter type was previously run in RFLAN mode.


Note


Only Root and Endpoint Operators (RBAC) can see and perform the endpoint operations and scheduling for the Channel Notch feature.


To manage an Itron Bridge Meter in cg-mesh mode, an Endpoint Operator (RBAC) must convert the RFLAN meter to a cg-mesh device type and upgrade all cg-mesh firmware to cg-mesh 5.6.x.

After successful registration, the channel notch settings (in the bootstrap config.bin) must be pushed to all modes by the Endpoint Operator as soon as possible to be compliant with local regulations.

There are two new properties associated with this feature:

  • channelNotchSettingEnd

  • To appear in the IoT FND user interface. Pages supported are CONFIG > CHANNEL NOTCH SETTINGS and CONFIG > CHANNEL NOTCH CONFIG.

  • channelNotchMaxAttempts = 20 (The maximum attempts to try to send the configuration and schedule information to all the endpoints).

After successful registration, the channel notch settings (in the bootstrap config.bin file) must be pushed to all nodes by the Endpoint Operator.

There are two new properties for this feature:

  • channelNotchMaxAttempts = 20. This property defines the maximum attempts allowed to send the configuration and schedule information to all the endpoints.

  • channelNotchSettingEnabled = true. This property allows you to enable the channel notch feature.

You can define up to four pairs of Notch Range Start and End Channels on the Channel Notch Settings page. These channel ranges must have increasing channel numbers for each range and cannot have any overlapping ranges. The ranges are blacklist ranges which are used to prohibit nodes from using the ranges of channels.

The CONFIG > CHANNEL NOTCH CONFIG page displays a list of the Config groups along with the details of group members and endpoints of each subnet. To initiate a Config push of current channel settings to the endpoints for all routers in the selected router config groups, you can press the Push Channel Config button. As the process of the channel config push progresses, the associated router config groups nested tables show the updated, remaining endpoint count and endpoint state of all endpoints.

The endpoints respond with a TLV 366 with the appropriate values to the channel notch config push, TLV 365.

Two additional properties are available:

  • channelNotchMaxAttempts = 20: This setting defines the maximum attempts that the software will attempt to send the config and schedule information to all of the endpoints.

  • allowNewNotchSettings=true: This setting allows notch settings to be changed at will and defines those setting that will be used in the config push.


Note


Before you can schedule activation of a Channel Notch Config, the router config groups must have successfully received their channel notch configuration. Note: Before you can schedule activation of a Channel Notch Config, the router config groups must have successfully received their channel notch configuration.


When you select the Schedule Channel Notch Config button, a pop up panel appears for you to set a reload time (day and time) that the Channel Notch Config will be activated.

Additionally, at the same time of the Channel Notch activation, you must also change the Channel Notch Config of the corresponding routers through Config Push.

To enable PAN-wide nodes to use the new Channel Notch at the same time, the node employs the following three mechanisms at the same time to guarantee that the new configuration is enabled:

  • Supports scheduling of time that the new Channel Notch Settings should take effect by using TLV 367. Note that the new Channel Notch Settings are stored in the platform flash. When the scheduled time arrives, the setting is copied to the device flash and then the node is rebooted to load the new config. If the node attempts to reboot before the scheduled time, the node will continue to wait until the scheduled time.

  • CGR sends an async beacon which includes the excluded channel range (ECR) through the new Channel Hopping Schedule.

  • When the nodes have been offline for five days, nodes will immediately enable the new Channel Notch Settings.

After endpoints have completed the initial enrollment and joined the mesh network, the endpoints may need to re-enroll the Utility IDevID and/or the LDEVID due to certificate expiration or proactive refresh of the certificates. FND 4.7 supports on-demand and auto re-enrollment. This action is seen in the Device Configuration page for a group of devices and on the Device Detail page for a single device.

Managing Landis+Gyr Devices in IoT FND

Cisco IoT FND supports the following Landis+Gyr (L+G) routers and endpoints.

Support for L+G Routers in IoT FND

  1. Series 6 N2450 — The Landis+Gyr Series 6 N2450 (RF Mesh IP) Network Gateway provides the basis for a powerful RF wireless mesh network for remote data collection and end-device monitoring and control. The Network Gateway offers advanced functionality, such as individual message prioritization, additional memory for localized intelligence and the Linux operating system.

  2. Series 6 R651 — The Landis+Gyr Gridstream RF Series 6 Network Router is designed for outdoor mounting. The router supports RS-232/485 serial interface for Transparent Packet Protocol (TPP) and RS-232 serial interface for LAN Packet Protocol (LPP). The LAN Packet Protocol line is used to communicate to devices which use LPP, such as a PC with configuration or diagnostic software, or an end device which has implemented LPP. The TPP provides a general data port and is used to transport byte-oriented data, such as that generated by industry standard protocols.

Support for L+G Endpoints in IoT FND

  1. M125 Gas Module — The M125 RF Residential Gas Communications Module provides two-way AMI communications retrofit solution for small diaphragm gas meters over Landis+Gyr’s scalable, secure, and interoperable Gridstream® Connect RF Mesh network. The module is designed to record and communicate consumption and one channel of interval data. This data equips utilities to develop flexible rate offerings and assists with capacity planning.

  2. M225 Gas Module — The M225 C&I Gas Communications Module provides two-way AMI communications retrofit solution for large diaphragm gas meters over Landis+Gyr’s scalable, secure, and interoperable Gridstream® Connect network. The M225 gas module automatically self-registers on the Gridstream Connect network upon installation, simplifying deployment by eliminating the need for field installation, configuration, and specialized tools. The module is designed to record and communicate both total consumption and two channels of interval data (configurable to intervals of 5, 15, 30 and 60 minutes), and can be configured to record and transmit data at different frequencies. This data equips utilities to develop flexible rate offerings and assists with capacity planning.

  3. E360/E660 (Revelo) — Landis+Gyr proudly introduces the Revelo™ metering family, the industry-first IoT grid sensing electric meters benefiting both utilities and their customers. Demands on the grid edge are changing — today’s energy consumers want more insight and control to manage energy better. Enhanced reliability, safety, and the growing adoption of Distributed Energy Resources (DER) require more than traditional meter-to-cash capabilities. Revelo is a true grid sensor, providing unprecedented insight and control through industry-leading waveform data technology, offering superior edge computing capabilities and a greater ability to sample, process, store, and deliver data to the right places in real-time.

LDevID: Auto-Renewal of Certs and Saving Configuration

Auto-enroll command is pushed along with LDevID-update and autorenewal_update TCL scripts on all the Field Area Routers that are managed by IoT FND. This ensures that all the managed FAR devices have the latest certificates for both new (Greenfield) and existing (Brownfield) deployments.


Note


This feature is not supported on IC3000 or IXM devices.



Note


By default, the certificate is renewed when it reaches the lifetime of 90% or you can use the following property to set the required percentage as per your requirement.

ldevid-auto-enroll-limit=<%>

Support Expired SUDI Certificate


Note


In IoT FND 4.7.x, this feature is enabled in the software. Therefore, FND 4.7.x supports expired SUDI certificates.


During the initial Simple Certificate Enrollment Protocol (SCEP) process, the Cisco SUDI certificate is used for authentication with the Registration Authority (RA) to acquire the Local Device Identifier (LDevID) certificate from the customer's Public Key Infrastructure (PKI). Once the LDevID is enrolled, it is used for communicating with the IoT Field Network Director (IoT FND) and the Cisco SUDI certificate is no longer required unless one of these actions occurs:

  • Factory reset

  • Return Material Authorization (RMA)

  • Router configuration is rolled back to express-setup-config

A previously enrolled device will see no impact for an expired Cisco SUDI certificate since the LDevID is used for ongoing communications. LDevID certificates have limited lifetimes and can be renewed or re-acquired using Cisco SUDI as credentials.

However, if a device with an expired Cisco SUDI certificate that was not previously enrolled or a previously enrolled device that was reinitialized and is added to a system using FND, authentication during SCEP enrollment fails unless FND skips the expiry check while validating the SUDI certificate as part of incoming request.

The Cisco Secure Unique Device Identifier (SUDI) certificate feature is supported on the following Cisco Field Area Routers (FARs) in which the SUDI is burned into the device:

C819, CGR1120, CGR1240, IR807, IR809, IR829, IXM, and IR1101.

The SUDI for the systems listed above expires on either Date of Manufacture plus 20 years or on May 14, 2029 (2029-05-14), whichever date is earlier.

In addition, the Certificate Expiry check is skipped at the security module, if the request comes from any flow such as Zero Touch Deployment (ZTD) or WSMA communications if it is a SUDI certificate.

Example Display

SUDI Certificate:

Certificate
Status: Available
Certificate Serial Number (hex): 01CDAFB1
Certificate Usage: General Purpose

Issuer:
cn=ACT2 SUDI CA
o=Cisco

Subject:
Name: CGR1240
Serial Number: PID:CGR1240/K9 SN:FTX2133G01Z
cn=CGR1240
ou=ACT-2 Lite SUDI
o=Cisco
serialNumber=PID:CGR1240/K9 SN:FTX2133G01Z
Validity Date:
start date: 03:19:56 UTC Aug 17 2017
end date: 03:19:56 UTC Aug 17 2027
Associated Trustpoints: CISCO_IDEVID_SUDI

CA Certificate
Status: Available
Certificate Serial Number (hex): 61096E7D00000000000C
Certificate Usage: Signature
Issuer:

cn=Cisco Root CA 2048
o=Cisco Systems

Subject:
cn=ACT2 SUDI CA
o=Cisco

CRL Distribution Points:

http://www.cisco.com/security/pki/crl/crca2048.crl

Validity Date:

start date: 17:56:57 UTC Jun 30 2011
end date: 20:25:42 UTC May 14 2029

Associated Trustpoints: CISCO_IDEVID_SUDI

Configuring Enrollment over Secure Transport

This section provides an overview of the components and configurations involved in integrating Enrollment over Secure Transport (EST) certificate enrollment for clients over the secure transport layer within the network. EST is based on public-private key exchange. This feature is supported on Itron meters, L+G meters, IR510, and IR530.

Table 4. EST Support
CR-Mesh Release Platform EST Support

6.2.34 MR onwards

IR530, IR510

Enrollment and re-enrollment

ITRON30

Re-enrollment

6.3.20 onwards

IR510, IR530, ITRON30

Enrollment and re-enrollment

EST Overview

The EST service is located between a Certification Authority (CA) and a client. EST uses Hypertext Transfer Protocol (HTTP) to provide an authenticated and authorized channel for Simple Public Key Infrastructure (PKI) Requests and Responses.

EST also operates with the following protocols and authentication methods:

  • Constrained Application Protocol (COAP) web transfer protocol for use with constrained nodes and constrained networks such as low-power, lossy networks.

  • TLS/SSL Handshake between Registration Authority (RA) and CA.

  • Datagram Transport Layer Security (DTLS) protocol is the preferred method for securing CoAP messages when the Nodes do not have any IPv6 (IP) addresses configured. DTLS uses UDP. It is based on Transport Layer Security (TLS).

  • Trust Anchor is explicitly configured on the client or server for use during EST TLS authentication.

Configuring FND Registration Authority (RA)

Follow these steps to configure the FND Registration Authority:

Procedure


Step 1

Install FND-RA rpm.

Step 2

Upon successful installation, configure FND-RA as shown in the example below:

[root@iot-fnd-ra fnd-ra]# cd /opt/fnd-ra/bin
python3.9 ra_setup.pyc
Do you want to change the Authentication server[y/n]? y
 
What Authentication server are you using?
1) Microsoft Certificate Services Auth
2) RADIUS
Enter 1 or 2
 
Authentication Server: 2
 
Host Name or IP address of the RADIUS server [10.29.36.224]:
Port Number of the RADIUS server (MIN=1, MAX=65535) [1812]:
Number of retries allowed for authentication requests (MIN=1, MAX=30) [5]:
RADIUS timeout in seconds (MIN = 1, MAX = 30) [5]:
Do you want to set the RADIUS realm [y/n]: n
 
Do you want to change the CA server[y/n]? y
 
What CA server are you using?
1) Microsoft CA
2) EST Proxy
Enter 1 or 2
 
CA Server: 2
 
Host Name or IP address of the EST CA [] 10.29.36.232
Port number of the EST CA (MIN=1, MAX=65535) [6789]:
EST CA proxy user ID[estuser]: <causer>
Timeout for the EST CA (MIN=1, MAX=60) [10]: 10
Do you want to set the Injected Path Segment [y/n]: n
 
Do you want to change the CA/Auth server credentials [y/n]? y
 
Enter CA/Auth credentials
 
Path and file name of the private key file: /home/certs/server-key.pem
Password to use with EST Proxy: password
RADIUS shared secret: <radius password>
 
Do you want to change RA server settings[y/n]? y
 
Host Name or IP Address for the RA to listen on[]: 10.29.36.243
Path to the identity certificate of RA []: /home/certs/server-cert.pem
Path and file name to the trusted certificate store for the RA[]: 
[/home/certs/est_trust_certificate.pem
Path and file name to the CACerts response file[]: 
/home/certs/multicacerts.crt
RA log level (debug/info/warn/error) [debug]: debug
Transport protocol (http/coap) [coap]: coap
What is the DTLS handshake timeout (MIN=2, MAX=60) [5]:5
What is the DTLS MTU size (MIN=256, MAX=1152) [1152]:1152
 
Do you want to change the FND server details[y/n]? y
 
FND IP address or host name [2100::5]: 10.29.36.235
FND Username [root]: root
Allow self signed certificate for fnd (y/n) [y]: y
FND password : <FND UI password for root user>
 
Please find your selections below:
 
Host Name or IP address of the RADIUS server : 10.29.36.224
Port Number of the RADIUS server (MIN=1, MAX=65535) : 1812
Number of retries allowed for authentication requests (MIN=1, MAX=30) : 5
RADIUS timeout in seconds (MIN = 1, MAX = 30) : 5
Do you want to enable Enhanced Certificate Auth CSR Checking (on/off) : 
off
Certificate attribute to be used in the local PKI domain? : commonName
Name for manufacturer 1 : cisco
Certificate attribute to be used in this manufacturer's local PKI domain : 
serialNumber
Path of the trust store for manufacturer 1 : /opt/fnd-ra/conf/sudica.pem
Host Name or IP address of the EST CA : 10.29.36.232
Port number of the EST CA (MIN=1, MAX=65535) : 6789
EST CA proxy user ID : estuser
Timeout for the EST CA (MIN=1, MAX=60) : 10
Host Name or IP Address for the RA to listen on : 10.29.36.243
Path to the identity certificate of RA : /home/certs/server-cert.pem
Path and file name to the trusted certificate store for the RA: 
/home/certs/est_trust_certificate.pem
Path and file name to the CACerts response file : 
/home/certs/multicacerts.crt
RA log level (debug/info/warn/error) : debug
Transport protocol (http/coap) : coap
What is the DTLS handshake timeout (MIN=2, MAX=60) : 5
What is the DTLS MTU size (MIN=256, MAX=1152) : 1152
FND IP address or host name : 10.29.36.235
FND Username : root
Allow self signed certificate for fnd (y/n) y
Do you confirm the selections[y/n]? : y
 
3. Start the RA.
[root@iot-fnd-ra fnd-ra]# service fnd-ra start
 
4. Verify the status of RA service.
[root@iot-fnd-ra fnd-ra]# service fnd-ra status
 
5. Error logs
#cat /opt/fnd-ra/logs/error.log
 
6. RA start stop restart status:
#service fnd-ra start|stop|status|restart
 
7. Verify the Configuration:
#cat /opt/fnd-ra/conf/nginx.con

DTLS Relay Configuration and Watchdog Cisco-RA Monitoring in FND

Set the DTLS relay configuration and Watchdog Cisco-RA monitoring in FND.


Note


Supported from version 4.5.0.122 onwards.


Procedure


Step 1

Choose CONFIG > Device Configuration > Groups > ENDPOINT > Default-IR500 > Edit Configuration Template.

Step 2

Select Enable from the DTLS Relay Settings drop-down list.

Step 3

Enter the RA Server IPv6 Address. Push configuration to the first (then subsequent) hop nodes, which have already joined CGR and registered with FND.

Step 4

Watchdog Cisco-RA monitoring from FND 4.5.x: Choose DEVICES > Servers > Registration Authority Servers.

The IP address corresponding to each of the RA server is picked from FND-RA:nginx.conf input.

Step 5

Cisco RA/EST-CA and RADIUS IPv4 Address Authentication: Choose DEVICES > Servers > SERVICES > Registration Authority Servers.

Figure 3. Events for FND-RA Service
Figure 4. Periodic Audit Trail for the FND-RA

FND Server Logs for Cisco RA/FND-RA Connectivity with FND

The following example shows the server.log for incorrect password:

tail -f /opt/cgms/server/cgms/log/server.log | grep 10.29.36.243
 
6844: localhost: Apr 03 2019 22:48:36.589 +0000: %IOTFND-6-UNSPECIFIED: %
[ch=CustomLoginModule][sev=INFO][tid=http-/0.0.0.0:443-7][rip=10.29.36.243]
[rp=10051]: userName :[root]
 
6845: localhost: Apr 03 2019 22:48:36.625 +0000: %IOTFND-3-UNSPECIFIED: %
[ch=AAAUtils][sev=ERROR][tid=http-/0.0.0.0:443-7][rip=10.29.36.243]
[rp=10051]: Passwords do not match for local user 'root'
 
6846: localhost: Apr 03 2019 22:48:36.635 +0000: %IOTFND-3-UNSPECIFIED: %
[ch=CustomLoginModule][sev=ERROR][tid=http-/0.0.0.0:443-7]
[rip=10.29.36.243][rp=10051]: Local Northbound API user 'root' failed 
authentication.

This example shows the server.log when the RA registration is successful:

tail -f /opt/cgms/server/cgms/log/server.log | grep 10.29.36.243
 
7105: localhost: Apr 03 2019 22:58:44.582 +0000: %IOTFND-6-UNSPECIFIED: %
[ch=CustomLoginModule][sev=INFO][tid=http-/0.0.0.0:443-6][rip=10.29.36.243]
[rp=10057]: userName :[root]
 
7106: localhost: Apr 03 2019 22:58:44.610 +0000: %IOTFND-6-UNSPECIFIED: %
[ch=CustomLoginModule][sev=INFO][tid=http-/0.0.0.0:443-6][rip=10.29.36.243]
[rp=10057]: Local Northbound API user 'root', IP '10.29.36.243' 
successfully authenticated. Passwords matched.
 
6916: kml-fnd1: Apr 15 2019 17:53:44.680 +0000: %IOTFND-6-UNSPECIFIED: %
[ch=SessionListener][sev=INFO][tid=http-/0.0.0.0:443-7]: Session timeout: 
1800 secs.
 
6917: kml-fnd1: Apr 15 2019 17:53:44.681 +0000: %IOTFND-6-UNSPECIFIED: %
[ch=BaseApiWebService][sev=INFO][tid=http-/0.0.0.0:443-7]: Checking 
permission for user : root
 
6918: kml-fnd1: Apr 15 2019 17:53:44.712 +0000: %IOTFND-6-UNSPECIFIED: %
[ch=ServiceServer][sev=INFO][tid=http-/0.0.0.0:443-7]: Received service 
notification request from service [RAiot-fnd-ra]
 

This example shows the server.log when the RA registration is unsuccessful because the user does not have NBAPI orchestration permission:


907: kml-fnd1: Apr 15 2019 17:53:07.492 +0000: %IOTFND-6-UNSPECIFIED: %
[ch=CustomLoginModule][sev=INFO][tid=http-/0.0.0.0:443-7][rip=172.27.126.8]
[rp=42167]: userName :[kaberi]
 
6908: kml-fnd1: Apr 15 2019 17:53:07.520 +0000: %IOTFND-6-UNSPECIFIED: %
[ch=CustomLoginModule][sev=INFO][tid=http-/0.0.0.0:443-7][rip=172.27.126.8]
[rp=42167]: Local Northbound API user 'kaberi', IP '172.27.126.8' 
successfully authenticated. Passwords matched.
 
6909: kml-fnd1: Apr 15 2019 17:53:07.526 +0000: %IOTFND-6-UNSPECIFIED: %
[ch=SessionListener][sev=INFO][tid=http-/0.0.0.0:443-7]: Session timeout: 
1800 secs.
 
6910: kml-fnd1: Apr 15 2019 17:53:07.527 +0000: %IOTFND-6-UNSPECIFIED: %
[ch=BaseApiWebService][sev=INFO][tid=http-/0.0.0.0:443-7]: Checking 
permission for user : kaberi
 
6911: kml-fnd1: Apr 15 2019 17:53:07.546 +0000: %IOTFND-3-UNSPECIFIED: %
[ch=CustomPermissionResolver][sev=ERROR][tid=http-/0.0.0.0:443-7]: 
Northbound API user 'kaberi' is NOT allowed to perform action 
'nbapi-orchestrationService'.

Cisco RA Events on FND

The following RA events are supported from IoT FND version 4.5.0.122 onwards:

  • Enroll request/response/failure — Generated during initial enrollment and re-enrollment of node with CA server. Failure occurs when the CA server(./runserver.sh is not running) is not up or port is blocked.

  • Auth success/failure — Generated during the dot1x authentication of node with the RADIUS server. Failure occurs when the Radius server IP is wrong in the FND-RA script(nginx.conf), dot1x entries are either wrong or not present.

  • CACert Request/Response — Generated during the CA cert re-enrollment.

  • Device Unknown Event — RA Events generated by a node which is not recognized/registered on FND.

  • SSL Event — Generated when there is an SSL protocol error.

Managing the Cisco Industrial Compute IC3000 Gateway

Before you can manage the IC3000 with the IoT FND you must review the details in Unboxing, Installing and Connecting to the IC3000 topic of the Cisco IC3000 Industrial Compute Gateway Deployment Guide.


Important


Before you can manage the IC3000 Gateway using IoT FND 4.3 and greater, you must first Deploy Pre-built IOx Applications via the App tab within IoT FND.

For more information, refer to the Use Case Example within the Cisco IC3000 Industrial Compute Gateway Deployment Guide.


This section within the Cisco IC3000 Industrial Compute Gateway Deployment Guide addresses the following actions, specific to IC3000:

Overview

IC3000 supports edge computing and communicates with IoT FND through the IOx application, Cisco Fog Director which is accessible via IOT FND.

When the IC3000 starts up, it registers with IoT FND. FND then pushes the configuration to the device. Information pushed includes: metric periodic profile interface settings, user management settings and the heartbeat time interval of the device.

Initial communication occurs by establishing a secure HTTPs session. This connection is then upgraded to a WebSocket connection after initial setup.

Using the WebSocket protocol allows the client and server to talk to each other as well as operate independently of each other as shown in the image below. The client does not need to make a request to connect to the server (see left side of network diagram).

Once established, the client and server communicate over the same TCP connection for the lifecycle of the WebSocket connection.

You can perform the following actions for an IC3000 device type on demand:

  • Refresh Metrics

  • Reboot

Device Category: GATEWAY (in Browse Devices pane). To view the IC3000 Gateway details:

  1. Choose DEVICES > Field Devices

  2. Select a IC3000 device under GATEWAY in the left-pane. The device info for the gateway appears as shown in the image below. At the Device Info page, you can Refresh Metrics and Reboot the IC3000.

For details on the IC3000 Devices, refer to the Cisco IC3000 Industrial Compute Gateway Deployment Guide.

Editing the IC3000 Gateway Configuration Template

To edit the IC3000 gateway configuration template:

Procedure

Step 1

Choose CONFIG > Device Configuration.

Step 2

Under CONFIGURATION GROUPS (left pane), select the GATEWAY group with the template to edit.

Step 3

Click Edit Configuration Template.

Step 4

Edit the configuration and use the Push Configuration tab to push the new configuration to the active or registered device.

Step 5

Click Save Changes.


NTP Configuration

To push the NTP configuration via FND,

Procedure

Step 1

Choose CONFIG > Device Configuration

Step 2

Under CONFIGURATION GROUPS (left pane), select the GATEWAY group with the template to edit.

Step 3

Click Edit Configuration Template.

Step 4

Select both NTP Configuration and NTP Server Configuration checkboxes. If NTP server is configured with authentication, select NTP Auth Configuration checkbox.

Note

 

The Auto Get checkbox under NTP Configuration deletes the NTP configuration that is manually pushed to the device from IoT FND. Hence, NTP Configuration should be configured along with NTP Server Configuration and NTP Auth Configuration.

Step 5

Enter values for all the fields under NTP Server Configuration and NTP Auth Configuration with the appropriate parameters.

Step 6

Click Save Changes.


Managing the Cisco Wireless Gateway for LoRaWAN

You can use the Browse Devices pane to display the Cisco Wireless Gateway for LoRaWAN devices (IXM-LPWA-800 and IXM-LPWA-900) that belongs to the IoT Gateway group.

The two Cisco Wireless Gateway for LoRaWAN products are:

  • A virtual interface (IXM-LPWA-800-16-K9) of the Cisco 809 and 829 Industrial Integrated Service Routers (IR809, IR829) to provide LoRa radio access with the IR809 and IR829 providing an IP backhaul (Gigabit Ethernet, Fiber, 4G/LTE, and Wi-Fi). In this case, LoRaWAN has an Operating Mode of IOS Interface and displays the Hosting Device ID for the IR800 system to which it connects (See Managing External Modules).

  • A standalone unit (IXM-LPWA-900-16-K9) using its own built-in Fast Ethernet backhaul to access LAN switches, routers, Wi-Fi AP or other IP interfaces. When functioning as a standalone gateway, LoRaWAN has an Operating Mode of Standalone.

Device Category: GATEWAY (in Browse Devices pane). To view the LoRaWAN Gateway:

  1. Choose DEVICES > Field Devices.

  2. Select a device under GATEWAY > default-lorawan or Cisco LoRa in the left-pane.

  3. Click on the desired IXM-LPWA-900 or IXM-LPWA-800 system listed in the Name column to display Device Info, Events, Config Properties, Running Config, and Assets for the gateway.


Note


You can view Device details for the IXM-LPWA-800 system at both the ROUTER > IR800 page and the GATEWAY page.


To perform supported actions for the GATEWAY, at the Device Info page use the following buttons:

  • Map, Default, + (Plus icon allows you to add a new view)

Managing Cisco IR510 WPAN Gateways

Cisco IR500 Industrial Router (formerly known as Cisco 500 Series wireless personal area network (WPAN) industrial routers) provides unlicensed 902-928MHz, ISM-band IEEE 802.15.4g/e/v WPAN communications to diverse Internet of Things (IoT) applications such as smart grid, distribution automation (DA), and supervisory control and data acquisition (SCADA). As the next generation of the DA gateway, IR510 provides higher throughput, distributed intelligence, GPS, and enhanced security. unlicensed 915-MHz industrial, scientific, and medical band WPAN communications.


Note


IR510 is identified and managed as an ENDPOINT in IoT FND (DEVICES > FIELD DEVICES > ENDPOINT > GATEWAY).



Note


When updating an existing installed software base for IR510 and IR530 devices, IoT FND uploads only the new software updates rather than the full image using bsdiff and bspatch files.


Profile Instances

IoT FND employs Profile-based configuration for IR510s. This allows you to define a specific Profile instance (configuration) that you can assign to multiple IR500 configuration groups. Table 6. Pre-defined Profiles for IR510 lists the supported Profile types.

Note the following about the Profiles:

  • Each Profile type has a default profile instance. The default Profile instance cannot be deleted.

  • You can create a Profile instance and associate that profile with multiple configuration groups on the IR510.

  • A ‘None’ option is available for all the Profile types that indicates that the configuration does not have any settings for that Profile type. 

  • When a configuration push is in progress for a configuration group, all the associated Profiles will be locked (lock icon displays) and Profiles cannot be updated or deleted during that time.

  • A lock icon displays for a locked Profile.

Create, Delete, Rename, or Clone any Profile at the Config Profiles Page

To create a new profile:

  1. Choose CONFIG > DEVICE CONFIGURATION > Config Profiles tab.

  2. Click the + (plus icon) at the top of the configuration panel to open the Add Profile entry panel.

  3. Enter a Name for the new profile and select the Profile Type from the drop-down menu.

  4. Click Add button. A new entry for the Profile entry appears in the left pane under the Profile Type sub-heading.

To delete a profile:

  1. Choose CONFIG > DEVICE CONFIGURATION > Config Profiles tab.

  2. Select the Profile name (excluding Default-Profile) that you want to delete. Click on the trash icon to remove the Profile.

  3. In the pop up window that appears, click Yes to confirm deletion.

To rename a profile:

  1. Choose CONFIG > DEVICE CONFIGURATION > Config Profiles tab.

  2. Select the Profile name (excluding Default-Profile) that you would to rename. Click on the pencil icon to open the Rename Profile pop up window.

  3. Make your edit and click OK. New name appears in the left pane.

To clone a profile:

  1. Choose CONFIG > DEVICE CONFIGURATION > Config Profiles tab.

  2. Select the Profile name that you want to clone. Click on the overlapping squares icon to open the Clone Profile pop up window.

  3. Enter a Name for the new profile (unique from the existing profile name).

  4. Click OK button. A new Profile entry appears in the left pane under the same Profile Type sub-heading.

Table 5. Pre-defined Profiles for IR510
Profile Name Description Properties Configurable in CSV File

Forward Mapping Rule (FMR) Profile

CONFIG > DEVICE CONFIGURATION > Config Profiles tab > FMR PROFILE

Interface configuration

CONFIG > DEVICE CONFIGURATION > GROUPS tab > Default-ir500 > Edit Configuration Template

Select the FMR profile from the drop-down menu

Processes IPv4 traffic between MAP nodes that are in two different MAP domains.

Each FMR rule has IPv4 Prefix, IPv4 Prefix Length and EA Bits Length.

You can define up to 10 FMR Profiles.

FMR settings are pushed to the device as a part of MAP-T Settings during configuration push.

Forward Mapping Rule IPv6 Prefix:

fmrIPv6Prefix0 to fmrIPv6Prefix9

Forward Mapping Rule IPv6 Prefix Length:

fmrIPv6PrefixLen0 to fmrIPv6PrefixLen9

DSCP profile

CONFIG > DEVICE CONFIGURATION > Config Profiles tab > DSCP PROFILE

Interface configuration

CONFIG > DEVICE CONFIGURATION > GROUPS tab > Default-ir500 > Edit Configuration Template

Select the DSCP profile from the drop-down menu

Sets the DSCP marking for the Ethernet QoS configuration.

DSCP marking has eight (8) marking options to choose.

- User Controlled

- Default Queue (Best Effort)

- Normal Queue: Low drop probability (AF11)

- Normal Queue: Medium drop probability (AF12)

- Normal Queue: High drop probability (AF13)

- Medium Queue: Low drop probability (AF21)

- Medium Queue: Medium drop probability (AF22)

- Medium Queue: High drop probability (AF23)

You can specify a maximum of 10 IPv4 addresses and associated DSCP markings.

NA

MAP-T Profile

CONFIG > DEVICE CONFIGURATION > Config Profiles tab > MAP-T PROFILE

Interface configuration CONFIG > DEVICE CONFIGURATION > GROUPS tab > Default-ir500 > Edit Configuration Template

Configures Basic Mapping Rule (BMR) and Default Mapping Rule (DMR) settings for IR509/IR510

Configures endUser properties.

endUserIPv6PrefixbmrIPv6PrefixLen

Serial Port Profile (DCE and DTE)

CONFIG > DEVICE CONFIGURATION > Config Profiles tab > SERIAL PROFILE

Interface configuration

CONFIG > DEVICE CONFIGURATION > GROUPS tab > Default-ir500 > Edit Configuration Template

Select the Serial Port profile (DTE) and/or Serial Port profile (DCE) from the drop-down menu

You can use different serial port profiles for DCE and DTE serial port settings).

You can configure the following settings on the serial interface:

  • Port affinity

  • Media Type

  • Data Bits

  • Parity

  • Flow Control

  • DSCP Marking

  • Baud rate

  • Stop Bit

Note

 

You can also configure Raw Socket Sessions settings at the this page.

NA

DHCP Client Profile

CONFIG > DEVICE CONFIGURATION > Config Profiles tab > DHCP CLIENT PROFILE

Interface configuration

CONFIG > DEVICE CONFIGURATION > GROUPS tab > Default-ir500 > Edit Configuration Template

Select the DSCP Client profile from the drop-down menu

The DHCPv4 server allocates an address to each client according to a static binding between a client-id and an IPv4 address.

FND configures this static binding supports up to 10 client mappings.

The DHCP Client ID binding profile configuration associates a client ID to an IPv4 Host address.

The Client-id of each Client is expected to be unique within a single IR510.

Any string can be used as client-id (for example, client-id=”iox”) can be mapped to a binding address in the pool.

NA

DHCP Server Profile

CONFIG > DEVICE CONFIGURATION > Config Profiles tab > DHCP SERVER PROFILE

Interface configuration

CONFIG > DEVICE CONFIGURATION > GROUPS tab > Default-ir500 > Edit Configuration Template

Select the DSCP Server profile from the drop-down menu

Information that the DHCPV4 Server returns as part of DHCP Options in the response, can be configured in the

DHCP server profile configuration includes:

  1. Lease Time

  2. DNS server list

NA

NAT44 Profile

CONFIG > DEVICE CONFIGURATION > Config Profiles tab > NAT 44 PROFILE

Interface configuration

CONFIG > DEVICE CONFIGURATION > GROUPS tab > Default-ir500 > Edit Configuration Template

Select the NAT44 profile from the drop-down menu

You can use one of the following methods to configure the NAT44 properties for the IR500 device:

- CSV import method

- NAT44 profile instance within FND user interface

You configure three fields for NAT44: Internal Address, Internal Port and External Port

You can configure up to fifteen NAT 44 Static Map entries

Note

 

Before you push the configuration, be sure to:

  1. Enable Ethernet on the configuration group to which the device belongs (select check box)

  2. Save Configuration Group

NA

Access Control List (ACL) Profile

CONFIG > DEVICE CONFIGURATION > Config Profiles tab > ACL PROFILE

Interface configuration

CONFIG > DEVICE CONFIGURATION > GROUPS tab > Default-ir500 > Edit Configuration Template

Select the ACL Profile from the drop-down menu.

Perform packet filtering to control which packets move through the network for increased security.

You can define up to 20 ACL Profiles. Each defined ACL has one associated Access Control Entry (ACE) for a maximum of 20 ACEs.

The check process goes through ACL from 1 to 20.

There is an implicit deny for all ACL at the end of 20 ACL unless configured differently.

To configure the interface for the Default-IR500, with Groups tab selected:

In the right-pane, choose Edit Configuration Template tab and select the Enable Interface ACL check box.

NA

Configuration Notes:

  • Set DSCP (QoS) markings for all interfaces - Ethernet, DTE and DCE. Options: Low Priority (0), Normal Priority (10), Medium Priority (18).

  • DSCP is applied on interfaces. Default values for DCE and DTE are Low Priority (0). There are no default values for Ethernet. Traffic will flow unmarked if you do not configure any value on the Configuration Template.

  • Only one Raw Socket session can flow through DCE and DTE interfaces at a time. The DSCP value will be the same throughout.

Configuration Profile for a Group

  • You can view Profile details in the Configuration Group Template page as shown in the image below.

  • You can save configuration templates and push the configuration to all devices in the Configuration Group.

  • Any of the Profile associations within a Configuration Group are optional. For example, a Configuration Group may not require Serial DCE settings, so you may select ‘None’ for Serial DCE settings.

Wi-SUN 1.0 Support

At the CONFIG > DEVICE CONFIGURATION and DEVICES > FIELD DEVICES > ENDPOINTS pages, you can now define and review the following actions for Wi-SUN 1.0 on the IR509 and IR510 WPAN gateways and the IR529 and IR530 Resilient Mesh Range Extenders as wells as an WPAN OFDM module installed within a CGR 1000 platform.

Summary of features and actions supported:

  • A search parameter, Mesh Protocol, allows you to filter based on Wi-SUN or Pre-Wi-SUN mode. (DEVICES > FIELD DEVICES > Browse Devices tab > function: gateway deviceType:ir500).

  • Registration and Configuration Push Validation Notifications (Success or Failure) sent for IR500 devices and other resilient mesh endpoints.

  • A Block Mesh Device option under the More Actions menu, allows you to block and blacklist resilient mesh endpoints (IR509, IR510, IR529, and IR530) that you suspect are not valid endpoints within the WPAN.

  • DSCP Markings Rule: Allows configuration of low, medium, and high precedence with a combination of 4 classes to provide 8 assignable options for DSCP Marking Profiles including default user-controlled options. (Previously, only three markings were supported). This feature is applicable to IR510 only.


Note


In Mesh Software 6.3, only the Wi-SUN 1.0 protocol is supported for all mesh endpoints. It displays Wi-SUN 1.0 from the mesh 6.3 firmware onward under the Mesh Protocol heading on the DEVICES > FIELD DEVICES > ENDPOINT > Inventory page.

The Wi-SUN settings have been removed from the IR500 Config Group template: CONFIG > DEVICE CONFIGURATION > Default-ir500 > Edit Configuration Template in IoT FND 4.7.

When using Mesh Software 6.2, for an IR510 running Wi-SUN mode 1.0, the Power Outage (PON) and Restore (PRN) messages will be sent as regular CSMP (Layer 2 to CSMP messages) / CoAP18 messages to port 61628. There is no change to the events generated by the new PON and PRN messages. Your router must be running 15.9(3)M1or greater for this capability.

When using Mesh Software 6.1, the Wi-SUN protocol is supported for all IR500 platforms. The mesh protocol setting between CG-Mesh and Wi-SUN 1.0 can only be set in the bootstrap configuration.


For Mesh Software 6.1, mesh endpoints send the PON and PRN messages to FND port 61625 as UDP messages. There are no changes in the events that are generated by the new PON and PRN CSMP messages.

Managing Head-End Routers

To manage Head-End Routers (HERs), open the Head-End Routers page by choosing Devices > Head-End Routers. Unless Enable Map is selected in user preferences, by default, the page displays the HERs in List view. When you open the Head-End Routers page in List view, IoT FND displays the Default list view. This view displays basic HER device properties. In addition, IoT FND provides these tabs to display additional HER property views:

  • Tunnel 1

  • Tunnel 2

Each one of these views displays different sets of device properties. These views display information about the HER tunnels.

For information on how to customize HER views, see Customizing Device Views

For information about the device properties displayed in each view, see Device Properties.

For information about the common actions in these views (for example, adding labels and changing device properties) that also apply to other devices, see Common Device Operations

Managing External Modules

To manage devices that connect to Field Devices such as routers, choose Devices > Field Devices. By default, the page displays all known FAN Devices in List view.

You can manage the following external modules using IoT FND.

Itron CAM Module

You can install an Itron CAM Module within a CGR, after you meet the following requirements:

Guest OS (GOS) must be running on a CGR before you install the Itron CAM module.

Similarly, IOx must be running on IR8100 before you install the CAM module.

Procedure


Step 1

ACTD driver must be installed and running within the CGR Guest OS before you can use IoT FND to deploy, upgrade or monitor ACTD. This ensures that IoT FND can reach the CGR Guest OS to manage the ACTD driver. This can be done by configuring NAT on the CGR or setup a static route on CGR and HER as follows:

  1. In the cgms.properties file, you must set the “manage-actd” property to true as follows:

    manage-actd=true
  2. Two new device properties are added for the user to specify the Guest OS external reachable IP address and the IOx access port in case port mapping is used.

    gosIpAddress <external IP address of Guest OS>
    ioxAccessPort  <default=8443>

Step 2

From within IoT FND, do the following to upload the ACTD driver:

  1. Choose CONFIG > FIRMWARE UPDATE > Images tab.

  2. Select CGR-Default profile from under the Groups panel and click the Upload Image button.

  3. Click + to open the Upload Image panel.

  4. Select the type ACTD-CGR and select the appropriate Image from the drop-down menu such app-actd-ver-x.y.z.tar. In the confirmation box, click Upload Image.

  5. Click Yes to confirm upload.

    Note

     

    For IR8100 device with CAM module, select Default-Ir8100 under the Groups panel and select the type as ACTD-IR8100 while uploading the image.

    Feature Name Release Information Description

    IR8100 with CAM Module Support

    IoT FND 4.10

    Itron CAM is the hardware module inserted into IR8100. The integration only applies to IR8100 routers.


Lorawan Gateway Module

Procedure


Step 1

LoRaWAN (IXM-LPWA-800) interface to IR800 router.

There are two ways to upload the LRR image for a LoRaWAN module to the IR800 router: during Zero Touch Deployment (ZTD) and by on-demand configuration push.

Note

 

IoT FND does not support discovery for the LoRaWAN module. Rather, IoT FND recognizes it as an IR800 module and will communicate with it via Cisco IOS.

Step 2

To view LoRaWAN modules in a Device List, choose an IR800 router in the Browse Devices list and select the LoRaWAN tab.

Step 3

To reboot the modem on the LoRaWAN module:

  1. Click the relevant IXM-LORA link under the Name column to display the information seen below:

  2. Click Reboot Modem. When the reboot completes, the date and time display in the Last Reboot Time field in the Device Info pane for the LoRaWAN module. You can only process one modem reboot at a time.

The Reboot Modem action generates two events: LoRa Modem Reboot Initiated and LoRa Modem Reboot Success.

Step 4

To remove a LoRaWAN module from the IR800 router inventory:

  1. In the Browse Devices pane, select the IR800, which has the LoRAWAN module that needs to be disabled and removed from inventory.

  2. Select the LoRaWAN tab and check the box next to the LoRaWAN module to be removed.

  3. At the More Actions drop-down list, select Remove Devices.

Step 5

To create a user-defined LoRaWAN (IXM) Tunnel, choose CONFIG > Tunnel Provisioning.

  1. In the left-pane, under GATEWAY, select the LoRaWAN system for which you want to configure a tunnel.

  2. Select the Gateway Tunnel Addition tab.

  3. In the Add Group window that appears, enter a Name for the LoRaWAN (IXM) Tunnel and select Gateway as the Device Category.

  4. Click Add.

    The new tunnel appears under the GATEWAY heading in the left-pane.


Routing Path

In Devices > Field Devices page, in the left-pane, under Endpoint, select the CAM module. In the Device Info page, the Routing Path table shows the topological connection where the device is displayed with the Hops connected.

The following table describes the routing path fields in the Device Info page.

Field Description

Hops

Number of hops that the element is from the root of its RPL routing tree

IP Address

IP address of the device.

Element ID

Element identifier of the device.

Status

Status of device (up/down).

Last Heard

Last date and time the device contacted IoT FND.

Managing Servers

To manage servers, open the Servers page by choosing Devices > Servers. By default, the page displays the servers in List view. When you open the Servers page in List view, IoT FND displays the Default list view. This view displays basic server device properties. To obtain information about a server, click its name.

To add additional views, see Customizing Device Views.

For more information about the device properties displayed in each view, see Device Properties.

For information about the common actions in this view, see Common Device Operations .

Managing NMS and Database Servers

In the Browse Devices pane, both NMS and Database servers appear under the All Server Devices heading.

In single NMS or Database server deployments, only one server appears under the NMS and/or Database Servers heading. In cluster deployments, multiple NMS servers appear under the NMS Servers heading. To filter the list pane:

  • To display all NMS servers, click Devices > Servers in the top-level menu and then select NMS Servers within the Browse Devices pane. In single NMS server deployments, only one server appears under the NMS Servers heading. In cluster deployments, multiple NMS servers appear under the NMS Servers heading.

  • To display all Database servers, click Devices > Servers in the top-level menu and then select Database Servers within the Browse Devices pane. In single-server deployments, only one database server appears under Database Servers. If a secondary database is configured, it also appears under the same entry.


Note


By default, only those NMS and Database Servers in an Up state display.


Managing Application Management Servers

To display details on the Fog Director, click Devices > Services in the top-level menu and then select Application Management Servers. Details include: Host System Information, Host Disk Information and Service Information. Graphs display details on CPU usage and memory usages.

Common Device Operations

This section describes how to use IoT FND to manage and view information about devices.

Tracking Assets

Assets represent non-Cisco equipment that is associated with an FND-managed Cisco device.

You can view Assets associated with specific routers (DEVICES > Field Devices) at the Device Detail pages of CGR1000, IR800, and SBR (Cisco 5921).

You can view a summary of all assets being tracked for all devices at the DEVICES > Assets page.

You can perform the following actions on Assets at the DEVICES > Assets page, using Bulk Operation:

  • Add Assets: Use to upload a CSV file of assets to FND. A history of past file uploads displays at the bottom of the page.

    Example of Asset content in CSV file:

    assetName,assetType,deviceEid,assetDescription,vin,
    hvacNumber,housePlate,attachToWO
    asset1,RDU,00173bab01300000,Sample description,value1, value2, value3,no

    Note


    Asset Name and Asset Type are the mandatory fields in the CSV file. All other fields are optional.


  • Change Asset Property (CSV file): Use to make changes to existing assets.

  • Remove Assets (CSV file): Use to remove specific assets.

  • Add Files to Assets (zip/tar file): Use to append additional information to Asset content.

Guidelines for Adding or Associating an Asset with a Device:

  • One or more assets can be mapped to a particular device.

  • A limit of five assets can be associated to a single device, and there is also a limit of five files per asset.

  • An asset can be mapped to only one device at any point in time.

Selecting Devices

  • To select all devices listed on a page, check the check box next to Name.

  • To select devices across all pages, click Select All.

  • To select a group of devices, check the check boxes of individual devices listed on a page and across pages. The count increments with every device selected, and selections on all pages are retained.

Customizing Device Views

IoT FND lets you customize device views. For List views you can:

  • Add and delete tabs

  • Specify the properties to display in the columns for each view (see Device Properties by Category for available properties)

  • Change the order of columns

Adding Device Views

Procedure

Step 1

Click the + icon at the end of the tabs list in the Field Devices page.

Step 2

In the Add new View dialog box, enter the name of the new tab.

Step 3

Select the properties from the Available Columns list and click the left-arrow button, or drag them into the Active Columns list to add them.

  • Use up and down arrow buttons or drag the properties to the desired position to change the column order.

  • Click the right arrow button or drag properties out of the Active Columns list to remove them.

Tip

 

Hold the Shift key to select multiple column labels and move them to either list.

Step 4

Click Save View.


Editing Device Views

Procedure

Step 1

Select the device type in the Browse Devices pane, and click the Default drop-down arrow to open the Edit/Delete View dialog box.

Step 2

In the Edit/Delete View dialog box:

  1. Select the properties from the Active Columns list and click the right-arrow button or drag them out to remove from the Active Columns.

  2. Select the properties from the Available Columns to add those properties into the Active Columns list and click the left-arrow button, or drag them into the Active Columns list.

  3. Select the properties from the Available Columns list and click the left-arrow button, or drag them into the Active Columns list to add them.

  4. Use the up and down-arrow buttons or drag the Active Columns to change the order.

  5. Click the X icon to close this view without saving changes.

Step 3

Click the disk icon to save the view.


Deleting a Device View

Procedure

Step 1

Select a device type under the Browse Devices pane, and click the Default drop-down arrow to open the Edit/Delete View dialog box.

Step 2

Click the trash icon to delete the custom view.


Viewing Devices in Map View

IoT FND provides a map view for visualizing device information based on geographic location. In Map view, IoT FND displays a Geographic Information System (GIS) map and uses GIS Map services to show device icons on the map based on the latitude and longitude information of the device. When this information is not defined for a device, IoT FND does not display the device on the map.

To view devices in Map view:

Procedure


Step 1

Choose <user> > Preferences (upper-right hand corner).

Step 2

Select the Enable map check box, and click Apply.

Step 3

Choose DEVICES > Field Devices.

Step 4

Click the Map tab.

By default, IoT FND displays all devices registered in its database on the map. Depending on the zoom level of the map and the device count, individual device icons might not display. Instead, IoT FND displays device group icons.

To view individual devices, zoom in until the device icons appear. You can also click on a device to display a popup window that includes the Zoom In link to move the map display to the device level.

IoT FND displays the device count next to each device group or category in the Browse Devices pane (left pane).

To display a subset of all devices, click one of the filters listed in the Browse Devices pane.

IoT FND changes the map region based on your selection and displays the devices found by the filter. For example, you can use the Routers > Up filter to display all routers that are up and running. You can also use saved custom filters in the Quick View pane (left pane) to filter the device view. For information about creating custom filters, see Creating a Quick View Filter.

To display information about a device or group, click its icon on the map.

A popup window displays listing basic device or group information.

To view device specifics, click Details or the device EID link in the Device popup window.

You can also ping the device, perform a trace route, and create a work order from this window.

Step 5

Close the Device popup window to view the RPL tree associated with the device. See Configuring RPL Tree Polling in the Managing System Settings chapter.

The RPL tree connection displays as blue or orange lines; where blue indicates that the link is down, and orange indicates that the link is up.

Step 6

Click the refresh button to update the Map view.


Configuring Map Settings

In Map view, IoT FND lets you configure these settings for maps:

  • Automatically zoom to devices

  • Display the map in grayscale

  • Default map location (set to North America by default)

To configure map settings:

Procedure


Step 1

Choose DEVICES > Field Devices.

Step 2

Click the Map tab.

  • To automatically zoom to devices, check the Zoom to Devices check box.

  • To display the map in grayscale, check the Grayscale check box.

Using the Overlay drop-down menu:

  • For Routers you can overlay: None, All, or Associated Endpoints on the map.

  • For Endpoints you can overlay: None, All, All Associated Routers, All Modulations, Active Link Type.

To set the map location to open to a certain area, display the area of the map to display by default, and then click Quick View/Rule(top of page).

Step 3

Click OK .


Changing the Sorting Order of Devices

To change the sorting order of devices, click the arrowhead icon in the column heading to list the entries in an ascending (upward pointing) or descending manner (downward pointing).

Exporting Device Information

IoT FND lets you export the device properties of the selected devices in List view. IoT FND exports only properties in the current view.

To export device information displayed in the current view, in List view:

Procedure


Step 1

Select the devices to export by checking their corresponding check boxes.

Step 2

Click Export CSV.

Step 3

Click Yes in the confirmation dialog box.


What to do next

IoT FND creates a CSV file, export.csv, containing the information that displays in the List view pane. By default, IoT FND saves this file to your default download directory. When a file with the same name exists, IoT FND adds a number to the default filename (for example, export-1.csv and export-2.csv).

The export.csv file consists of one header line defining the exported fields followed by one or more lines, each representing a device. Here is an example of an export of selected devices from the Field Devices page:


name,lastHeard,meshEndpointCount,uptime,runningFirmwareVersion,
openIssues,labels,lat,lng
CGR1240/K9+JSJLABTES32,2012-09-19 00:58:22.0,,,,
Door Open|Port Down,,50.4,-130.5
sgbuA1_cgr0,,,,,,,42.19716359,-87.93733641
sgbuA1_cgr1,,,,,,,44.3558597,-114.8060403

Pinging Devices

When troubleshooting device issues, ping registered devices to rule out network connectivity issues. If you can ping a device, it is accessible over the network.

To ping selected devices, in List view:

Procedure


Step 1

Check the check boxes of the devices to ping.

Note

 

If the status of a device is Unheard, a ping gets no response.

Step 2

Click Ping button in heading above List view entries.

A window displays the ping results. If you check the check box for Auto Refresh, IoT FND pings the device at predefined intervals until you close the window. Click the Refresh button (far right) to ping the device at any time.

Step 3

To close ping display, click X icon.


Tracing Routes to Devices

The Traceroute command lets you determine the route used to reach a device IP address.


Note


You cannot use the Traceroute command with the Itron OpenWay RIVA CAM module or the Itron OpenWay RIVA Electric devices and Itron OpenWay RIVA G-W (Gas-Water) devices.


To trace routes to selected devices, in List view:

Procedure


Step 1

Check the check boxes of the devices to trace.

Note

 

You can only trace routes to devices registered with IoT FND. If the status of a device is Unheard, you cannot trace the route to it.

Step 2

Click Traceroute.

A window displays with the route-tracing results.

Expand the Result column to view complete route information.

Click the Refresh button to resend the Traceroute command. Check the Auto Refresh check box to resend the Traceroute command at predefined intervals until you close the window.

Step 3

Click X to close the window.


Managing Device Labels

You use labels to create logical groups of devices to facilitate locating devices and device management.

Managing Labels

You use the Label Management window to display all custom labels, label properties, and search for custom labels.

To manage labels, in the Browse Device pane on any devices page:

Procedure

Step 1

Hover your mouse over LABELS and click the edit (pencil) icon.

  • To find a specific label, enter the label name in the Search field.

Tip

 

Click the arrowhead icon next to the Search field to reverse label name sort order.

To change label properties, double-click a label row and edit the label name and device status display preference.

Step 2

Click Update to accept label property changes or Cancel to retain label properties.

Step 3

Click Close.


Adding Labels

To add labels to selected devices, in List view:

Procedure

Step 1

Check the check boxes of the devices to label.

Choose Label > Add Label.

Step 2

Enter the name of the label or choose an existing label from the drop-down list.

Step 3

Click Add Label.

Tip

 

You can add multiple labels to one device.

Step 4

Click OK.


What to do next

To add labels in bulk, see Adding Labels in Bulk.

Removing Labels

To remove labels from selected devices, in List view:

Procedure

Step 1

Check the check boxes of the devices from which to remove the label.

Step 2

Choose Label > Remove Label.

Step 3

Click OK.

To remove labels in bulk, see Removing Labels in Bulk.


Removing Devices


Note


When you remove routers, IoT FND returns all the leased IP addresses associated with these devices to the Cisco Network Registrar (CNR) server and removes the corresponding tunnels from the head-end routers.


To remove devices, in List view:

Procedure


Step 1

Check the check boxes of the devices to remove.

Step 2

Choose More Actions > Remove Devices.

Step 3

Click Yes.


Displaying Detailed Device Information

IoT FND keeps detailed information about every device in the system. To access detailed information about a device, click its name or EID.

Server Information

Select DEVICES > Servers and click the Name of the server to open a page to display the following information about the NMS servers.

Table 6. NMS Server Pane Areas
Area and Field Name Description

Host System Information

Hostname

Hostname of the IoT FND server.

Host Operating System

Operating system.

CPU

CPU specifications and CPU Usage graph.

Total Memory

Total amount of RAM memory (GB) available on the system and Memory Usage graph.

Current System Time

Current system time.

Host Disk Information

File System

File system.

Size

Size of file system disk space (GB).

Used

Amount of file system disk space used (GB).

Available

Available file system disk space (GB).

Use %

Percentage of file system disk space used.

Mounted On

The directory in which the file system is mounted.

IoT FND Application Information

EID

EID of the server.

Start Time

Time when the IoT FND server started.

Number of Restarts

The number of times the IoT FND application has restarted.

Memory Allocation

Memory space allocation in GB for the IoT FND application.

Graphs

CPU usage

Displays usage information during set and custom-defined intervals.

For more information on viewing the chart for default or custom-defined time intervals, refer to Setting Time Filters To View Charts

Memory Usage

Memory usage plotted in MB.

CSMP

CoAP Simple Management Protocol (CSMP) message statistics.

Head-end Router, Router, and Endpoint Information

Select DEVICES > Field Devices and then select a device type (router, head-end router or endpoint) from the Browse Devices pane. Then, click on the Name of a specific system from the device list to see the available information (such as Device Info, Events, Config Properties, etc.) for that system type as shown in the screen shot below.

A detailed summary for each device is summarized in the table below.

Information Category Description

Device Info (all)

Displays detailed device information (see Device Properties).

For routers and endpoints, IoT FND also displays charts (see Viewing Device Charts in the Monitoring chapter of this guide.

Events (all)

Displays information about events associated with the device.

Config Properties (routers, endpoints: meter-cgmesh, gateway-IR500, meter-cellular)

Displays the configurable properties of a device (see Device Properties).

You can configure these properties by importing a CSV file specifying the properties to configure and their new values, as described in Changing Device Configuration Properties.

Running Config (routers)

Displays the running configuration on the device.

Routing Tree (CGR1000, endpoints: gateway-IR500, meter-cgmesh, meter-OW Riva)

Displays the routing tree. For routers, the pane displays all the possible routers from the endpoints to the router. For endpoints, the Routing Tree pane displays the mesh route to the router.

Link Traffic (routers)

Displays the type of link traffic over time in bits per second.

Router Files (routers)

Lists files uploaded to the .../managed/files/ directory.

Raw Sockets (routers)

Lists metrics and session data for the TCP Raw Sockets (see table in the Raw Sockets Metrics and Sessions).

Embedded AP (IR829 only)

Lists inventory (configuration) details and metrics for the attached access point.

AP Running Config (IR8829 only)

Lists the running configuration file for the attached access point.

Actions You Can Perform from the Detailed Device Information Page

Depending on device type, the Detailed Device Information page lets you perform the actions summarized in the table below:

Action Description

Show on Map (endpoints)

Displays a popup window with a map location of the device. This is the equivalent of entering eid:Device_EID in the search field in Map View.

Ping

Sends a ping to the device to determine its network connectivity. See Pinging Devices.

Traceroute

Traces the route to the device. See Tracing Routes to Devices.

Refresh Metrics

(Head-end routers and routers only)

Instructs the device to send metrics to IoT FND.

Note

 

IoT FND assigns historical values for metrics for each device. To access historical metric values, use the GetMetricHistory North Bound API call.

Reboot

Enables a reboot of the modem on LoRaWAN.

Sync Config Membership

(Mesh endpoints only)

Synchronizes the configuration membership for this device. See Synchronizing Endpoint Membership.

Sync Firmware Membership

(Mesh endpoints only)

Click Firmware Membershipto synchronize the firmware membership for this device, and then click Yes to complete the process.

Block Mesh Device

(Mesh endpoints only)

Blocks the mesh endpoint device.

Caution

 

This is a disruptive operation.

Note

 

You cannot use Block Mesh Device with the Itron OpenWay RIVA CAM module or the Itron OpenWay RIVA Electric devices and Itron OpenWay RIVA G-W (Gas-Water) devices.

Erase Node Certificates

Removes Node certificates.

Create Work Order

(Routers and DA Gateway only)

Creates a work order. See Demo and Bandwidth Operation Modes.

Using Filters to Control the Display of Devices

Depending on your deployment, the number of devices managed by IoT FND can be very large (IoT FND supports up to 10 million devices). To facilitate locating and displaying devices in Map View and List view, IoT FND provides filters and lets you add customized filters. Filters are listed in the Browse Devices and Quick View tabs.

Browse Devices Filters

Built-in device filters display in the Browse Devices pane. These filters control the display of devices in List and Map views. For every filter entry, IoT FND provides a device count in parenthesis. IoT FND automatically updates the device count without having to reload the page. The top-level Endpoints label is selected, which inserts the following built-in filter in the Search Devices field: deviceType:cgmesh firmwareGroup:default-cgmesh.

Creating and Editing Quick View Filters

The Quick View pane displays custom filters. Click a filter in this pane to view the devices that fulfill the search criteria defined in the filter.

Creating a Quick View Filter

To create a Quick View filter:

Procedure

Step 1

On any device page, click Show Filters and add filters to the Search field

For more information about adding filters, see Adding a Filter.

Step 2

From the Quick View/Rule drop-down menu, choose Create Quick View.

Step 3

In the Create Quick View dialog box that opens, enter a Name for the view.

Step 4

Click the disk icon to save the view. To close without saving, click the X.


Editing a Quick View Filter

To edit or delete a Quick View filter:

Procedure

Step 1

Click the Quick View tab and select the filter to edit.

Step 2

From the Quick View/Rule drop-down menu, choose Edit Quick View

Step 3

In the Update Quick View dialog box, make the necessary modifications, and then click Save

Step 4

To delete the Quick View, click the Delete button.


Adding a Filter

To add a filter to the Search field:

Procedure

Step 1

If the Add Filter fields are not present under the Search field, click Show Filters.

Step 2

From the Label drop-down menu, choose a filter.

The drop-down menu defines filters for all device information categories. For more information about these categories, see Working with Router Views.

Step 3

From the Operator (:) drop-down menu, choose an operator.

For more information about operators, see Filter Operators. If you choose a numeric metric from the Label menu (for example, Transmit Speed), you can specify a range of values in the filter you are adding. For date/time filters, “between” is the operator. Use the calendar buttons to specify the date range for the filter.

Step 4

In the Value field, enter a value to match or a range of values in the case of numeric metrics or select an available value from the drop-down menu.

Step 5

Click the Add (+) button to add the filter to the existing filter syntax in the Search field.

Step 6

(Optional) Repeat the process to continue adding filters.


Filter Operators

Filter Operators describes the operators you can use to create filters.

Table 7. Filter Operators
Operator Description

:

Equal to

>

Greater than

>=

Greater than or equal to

<

Less than

<=

Less than or equal to

<>

Not equal to

Search Syntax

IoT FND supports this simple query language syntax:

Search := filter [filter ...]

Filter := fieldname operator value

operator := < | <= | > | >= | <> | = | :

Note the following when creating filters to search fields:

  • Each field has a data type (String, Number, Boolean, and Date).

  • String fields can contain a string, and you can search them using string equality (“:”).

  • Numeric fields can contain a decimal number (stored as a double-precision float), and you can search them using the numeric comparison operators (“>”, “>=”, “<“, “<=”, “<>”).

  • Boolean fields can contain the strings “true” or “false”.

  • Date fields can contain a date in this format: yyyy-MM-dd HH:mm:ss:SSS. You can search dates using numeric comparison operators.

Table 8. Filter Examples
Filter Description

configGroup:"default-cgr1000"

Finds all devices that belong to the default-cgr1000 group.


name:00173*

Finds all routers with a name starting with 00173.


deviceType:cgr1000 status:up label:"Nevada"

Finds all CGR 1000s in the Nevada group that are up and running.

Performing Bulk Import Actions

In IoT FND, you can perform the bulk import device actions.

Adding Routers, Head-End Routers, IC3000 Gateway, Endpoint and Extenders and IR500 in Bulk

The Add Devices option in the Bulk Operation drop-down menu lets you add devices to IoT Field Network Director in bulk using a CSV file.

To add devices in bulk:

Procedure

Step 1

On any Device page (such as DEVICES > FIELD DEVICES), choose Add Devices.

Step 2

In the Add Devices window, click Browse to locate the CSV file containing the device information to import, and then click Add.

Note

 

IoT FND will allow to select only CSV or XML files from the system and the file with other extension will be in disabled state.

IoT FND will not allow you to upload file names with special characters such as &,<,>,",',`,\,/,=,{,},[,],(,),%, and ;.

For more information about adding gateways, see Adding an IC3000 Gateway

For more information about adding HERs, see Adding HERs to IoT FND

For more information about adding routers, see Adding Routers to IoT FND

Note

 

For routers, you can also use the Notice-of-Shipment XML file provided by your Cisco partner to import routers.

Step 3

Click Add.

Step 4

Click Close.


Adding an IC3000 Gateway

To add a gateway to IoT FND, create a CSV file like the following example that consists of a header line followed by one or more lines, each representing a separate gateway:


eid,deviceType,lat,lng,IOxUserName,IOxUserPassword
IC3000+FOC2219Y47Z,ic3000,10,10,system,
r6Bx/jSWuFi2vs9U1Zh21NSILakPJNwS1CY/jQBYYRcxSH8qLpgUtOn7nqywr/
vOkVPYbNPAFXj4Pbag6m1spjZLR6oc1PkT9eF6108frFXy+
eI2FFaUZlSCKTdjSqfur5EwEu1E5u54ckMi1e07X8INZuNdFNFU7ZgElt3es8yrpR3i/
EgDOdSb5dqw0u3lOeVrEtPY0xBHraYgPv+dBh3XtW4i2Kv/sveiTBPx2FiNRvuLWil7Qm+
D7bl1Fh4ZJCivapy7EYZirwHHAVJlQh6bWYrGAccNPkY+KqIZDCyX/
Ck5psmgzyAHKmj8Dq7K0nBsnq2+b2VKReEhsj9+Fw==
Adding HERs to IoT FND
Configuring HERs Before Adding them to IoT FND

Before you can add an HER to IoT FND, configure the HER to allow management by IoT FND using Netconf over SSH as follows:


hostname
 <her_hostname> ip domain-name
 <domain.com> aaa new-model 
no ip domain-lookup
ip ssh time-out 120
ip ssh version 2
crypto key gen rsa 
netconf ssh
netconf max-sessions 16

Where <her_hostname> is the hostname or IP address of the IoT FND server, and <domain.com> is the name of the domain name where the HER and IoT FND reside. The time-out value of 120 is required for large networks.

After configuring the HER to allow management by IoT FND, ensure that you can:

  • Ping the management interface of the HER.

  • Access the management interface of the HER over SSH and vice versa.

Adding HERs

To add HERs, create a CSV file like the following example that consists of a header line followed by one or more lines, each representing an HER:


eid,deviceType,lat,lng,ip,netconfUsername,netconfPassword
ASR1001+JAE1546007O,asr1000,40.0,-132.0,172.27.166.57,admin,cisco
ASR1001+JAE15460071,asr1000,40.0,-132.0,172.27.166.58,admin,cisco

The below table describes the fields to include in the CSV file.


Note


For device configuration field descriptions, see Device Properties


Table 9. HER Import Fields
Field Description

eid

The element identifier (EID) of the device, which consists of the product ID (PID), a plus sign, and the serial number (SN) of the HER (for example, HER_PID +HER_SN ).

deviceType

The device type must be asr1000 or isr3900.

lat

(Optional) The location (latitude and longitude) of the HER.

lng

ip

The IP address of the HER. The address must be reachable from the IoT FND server.

netconfAddress

netconfUsername

The SSH username and password that IoT FND uses to connect to the HER.

netconfPassword

When you add an HER, IoT FND displays its status as Unheard. IoT FND changes the status to Up after it polls the HER. IoT FND polls HERs in the background every 15 minutes to collect device metrics, so it should take no more than 15 minutes for the status of HERs to change to Up after you add them to IoT FND. However, you can trigger the polling of HERs by clicking Refresh Metrics.

Adding Routers to IoT FND

Typically, when adding routers to IoT FND, you use the Notice-of-Shipment XML file sent to you by your Cisco partner. This file contains an <R> record for every router shipped to you. This is an example of an <R> record for a CGR:


<AMI>
	<Re1ays>
		<DCG deviceC1ass=?10.84.82.56?>
			<PID>CGR1240/K9</PID>
			<R>
				<ESN>2.16.840.1.114416.3.2286.333498</ESN>
				<SN>FIXT:SG-SALTA-10</SN>
				<wifiSsid>wifi ssid 1</wifiSsid>
				<wifiPsk>wifi psk 1</wifiPsk>
				<adminPassword>ppswd 1</adminPassword>
				<type6PasswordMasterKey>secret 1</type6PasswordMasterKey>
				<tunne1SrcInterface1>Ethernet2/3</tunnelSrcInterface1>
			</R>
		</DCG>
	</Re1ays>
</AMI>

Note


For a list of all Device Properties that you can configure using the XML configuration template go to Device Properties.

The Router Import Fields table describes the router properties defined in the <R> record used in this example:

Table 10. Router Import Fields
Field Description

PID

The product ID, as supplied by Cisco. This is not printed on the product.

SN

The router serial number.

Note

 

IoT FND forms the router EID by combining the PID and SN.

ESN

A serial number assigned by your Cisco partner to the WPAN mesh card inside the router. This field is not used by IoT FND.

wifiSsid

This information is configured on the router by your Cisco partner during the manufacturing configuration process. IoT FND stores this information in its database for future use.

wifiPsk

adminPassword

adminUsername

type6PasswordMasterKey

tunnelSrcInterface1

Mapping Routers to HERs

After you determine the Router-to-HER mapping, which is essential for tunnel provisioning, you can configure the mapping in IoT FND in one of two ways:

  • Adding the mapping information to every router record in the Notice-of-Shipment XML file.

  • Creating a CSV file specifying the mapping of routers to HERs

Adding Router-to-HER Mappings to the Notice-of-Shipment XML File

To map a router to an HER, add the tunnelHerEid and ipsecTunnelDestAddr1 HER properties to the router record in the Notice-of-Shipment XML file.

  • The tunnelHerEid property specifies the EID of the HER

  • The ipsecTunnelDestAddr1 property specifies the tunnel IP address of the HER.

For example:


...
		<tunnelHerEid>ASR1001+JAE15460070</tunnelHerEid>
		<ipsecTunnelDestAddr1>172.27.166.187</ipsecTunnelDestAddr1>
	</R>
</DCG>
Adding Router-to-HER Mappings to a CSV File

To map routers to HERs using a CSV file, add a line for every router-to-HER mapping. The line must specify the EID of the router, the EID of the corresponding HER, and the tunnel IP address of the HER, as in this example for a CGR:


eid,tunnelHerEid,ipsecTunnelDestAddr1
CGR1240/K9+FIXT:SG-SALTA-10,ASR1001+JAE1546007O,172.27.166.187

Removing Devices in Bulk

You can remove devices in bulk using a CSV file listing the EIDs of the devices to remove.


Caution


When you remove routers, IoT FND returns all the leased IP addresses associated with these devices to CNR and removes the corresponding tunnels from the HERs.


To remove devices in bulk:

Procedure

Step 1

Choose Devices > Device Type.

Step 2

Choose Bulk Operation > Remove Devices.

Step 3

Click Browse to locate the CSV file containing the devices to delete, and then click Choose.

This is an example of the CSV format expected. In this case, the CSV file specifies three CGRs and one HER:

eid
cgr1000-CA-107
cgr1000-CA-108
cgr1000-CA-109
asr1000-CA-118

Step 4

Click Remove.

The Status section of the Remove Devices window displays the status of the operation. The History section describes additional information about the operation. If there was any failure, click the corresponding link in the Failure# column to get more information about the error.

Step 5

Click Close when done.


Changing Device Properties in Bulk

IoT FND lets you configure device properties in bulk using a CSV file. For example, this CSV file changes the latitude and longitude for the specified HER:

eid,lat,lng,ip,
ASR1001+JAE1546007O,42.0,-120.0

To configure device properties in bulk:

Procedure

Step 1

On any device page, choose Bulk Operation > Change Device Properties.

Step 2

Click Browse to locate the CSV containing the list of devices and corresponding properties to configure, and then click Open

Step 3

Click Change.

Step 4

Click Close when done.


Adding Labels in Bulk

You can group devices logically by assigning them labels. Labels are independent of device type, and devices of any type can belong to any label. A device can also have multiple labels. Unlike configuration groups and firmware groups, there are no policies or metadata associated with labels.

IoT FND lets you add labels in bulk using a CSV file. In the CSV file, specify the list of devices to be labeled.

To add device labels:

Procedure

Step 1

On any device page, choose Bulk Operation > Add Label.

Step 2

Click Browse to locate the CSV file that contains the list of devices to label, and then click Open.

This is an example of the expected CSV format:

eid
cgr1000-CA-107
cgr1000-CA-108
cgr1000-CA-109
asr1000-CA-118

Step 3

In the Label field, enter the label or choose one from the drop-down menu.

Step 4

Click Add Label.

The label appears in the Browse Devices tab (left pane) under LABELS.

Step 5

Click Close when done.


Removing Labels in Bulk

IoT FND lets you delete labels in bulk using a CSV file.

To delete device labels:

Procedure

Step 1

On any device page, choose Bulk Operation > Remove Label.

Step 2

Click Browse to locate the CSV containing the list of devices to remove the label from, and then click Open.

Step 3

From the drop-down menu, choose the label to remove.

Step 4

Click Remove Label.

Step 5

Click Close.


What to do next

From the drop-down list, choose the label to remove.

Configuring Rules

A IoT FND rule defines a filter and actions that IoT FND performs after an event or after it receives metrics that match the search criteria defined in the filter. Rules can check for event conditions and metric thresholds.

For example, whenever the status of a router in a configuration group changes to Up, you can add a custom message to the server log (server.log) and add the appropriate labels to the device. This helps you automate the process of adding labels to devices.

When working with rules, you can do the following:

  • Add rules with conditions and actions.

  • Define a rule with a condition using a device search query, which matches devices according to properties and metrics.

  • Define a rule with an action that adds labels to matching devices or to the devices that sent a matching event.

  • Define a rule with an action that removes a label from a matching device or the device that sent a matching event.

  • Define a rule with an action that places a user alert event into the log, which includes a user-defined message.

Viewing and Editing Rules

To view rules:

Procedure


Step 1

Choose CONFIG > Rules.

IoT FND displays the list of rules stored in its database. Rule Fields describes the fields displayed in the list.

Field Description

Name

The name of the rule.

Active?

Whether the rule is active. Rules are not applied until you activate them.

Rule definition

The syntax of the rule. Some examples are listed below.

  • IoT FND executes this rule when a device battery 0 level drops below 50%: battery0Level<50

  • deviceType:cgmesh eventName:up

  • deviceType:ir500 eventName:outage

Rule Actions

The actions performed by the rule. For example:

Log Event With: CA-Registered, Add Label: CA-Registered

In this example, the actions:

  • Set the eventMessage property of the Rule Event generated by this rule to CA-Registered.

  • Add the label CA-Registered to the matching device.

Updated By

The username of user who last updated the rule.

Updated At

The date and time when the rule was last updated.

Step 2

To edit a rule, click its name.

For information on how to edit rules, see Creating a Rule


Creating a Rule

To add a rule:

Procedure


Step 1

Choose CONFIG > Rules.

Step 2

Click Add.

Step 3

Enter a name for the rule.

Note

 

If you enter invalid characters (for example, “=”, “+”, and “~”), IoT FND displays a red alert icon, highlights the field in red, and disables the OK button.

Step 4

To activate the rule, check the Active check box.

Step 5

In the Construct Rule panel, enter the syntax of the rule.

Use the same syntax used for creating filters. See Search Syntax.

Step 6

In the Create Rule panel, check the check box of at least one action:

  • Log event with — Specify the message to add to the log entry of the event in the server log, the severity, and event name.

    • Severity — Select the severity level to assign to the event.

    • User-defined Event — Assign a name to the event Searching By Event Name.

For example, if you enter Red Alert in this field, set the Severity to CRITICAL and enter CHECK ROUTER in the Event Name field, the eventMessage field in the logged entry for the event that matches the rule is set to Red Alert, as shown in this sample entry from the server log (server.log):


16494287: NMS-200-5: May 02 2017 22:32:41.964 +0000: %CGMS-7
-UNSPECIFIED: %
[ch=EventProducer][sev=DEBUG][tid=com.espertech.esper.Outbound-
CgmsEventProvider-1]: Event Object
 which is send = EventObject 
[netElementId=50071, eventTime=1335997961962, eventSeverity=0,
 eventSource=cgr1000, eventType=UserEventType,
 eventMessage=Red Alert
, eventName=CHECK ROUTER
, lat=36.319324, lng=-129.920815, 
geoHash=9n7weedx3sdydv1b6ycjw, eventTypeId=1045,
 eid=CGR1240/K9+JAF1603BBFF]

In IoT FND, the message you define in the Log event with field appears in the Message field of the matching event entries listed on the Events page (Operations > Events), and the new Event Name is a new search filter.

Add Label — Enter the name of a new label or choose one from the Add Label drop-down menu.

Show label status on Field Devices page — Shows the status of the device that triggered this rule in the LABELS section of the Browse Devices pane.

Remove Label — Choose the label to remove from the Remove Label drop-down menu.

Step 7

Click the disk icon to Save changes.


Activating Rules

IoT FND only applies rules that you activate.

To activate a rule:

Procedure


Step 1

Choose CONFIG > Rules.

Step 2

Check the check boxes of the rules to activate.

Step 3

Click Activate.

Step 4

Click Yes to activate the rule.

Step 5

Click OK.


Deactivating Rules

If you deactivate a rule, IoT FND does not apply it.

To deactivate rules:

Procedure


Step 1

Choose CONFIG > Rules.

Step 2

Check the check boxes of the rules to activate.

Step 3

Click Yes to deactivate the rule.

Step 4

Click OK.


Deleting Rules

To delete rules:

Procedure


Step 1

Choose CONFIG > Rules.

Step 2

Check the check boxes of the rules to activate.

Step 3

Click Delete.

Step 4

Click Yes to delete the rule.

Step 5

Click OK.


Configuring Devices

This section describes how to configure devices in IoT FND, including:

Configuring Device Group Settings

IoT FND uses groups to manage devices in bulk. When you add routers to IoT Field Network Director, IoT FND automatically adds them to the appropriate default ROUTER configuration groups, for example, default-cgr1000 or . When you add MEs (meters and range extenders), IoT FND adds them to the default ENDPOINT configuration group, default-cgmesh.

Creating Device Groups

By default, IoT FND defines the following device groups that are listed on the CONFIG > Device Configuration page left tree as follows:

Group Name Description

Default-act

By default, all Itron OpenWay RIVA Electric devices (ENDPOINT) are members of this group.

  • Individual RIVA electric devices listed under the Group heading display as OW Riva CENTRON.

Default-bact

By default, all Itron OpenWay RIVA G-W (Gas-Water) devices (ENDPOINT) are members of this group.

  • Individual RIVA water meters listed under the Group heading display as OW Riva G-W.

  • Individual RIVA gas meters listed under the Group heading display as OW Riva G-W.

Default-cam

By default, all Itron OpenWay RIVA CAM modules (ENDPOINT) are members of this group.

  • Individual RIVA CAM modules listed under the CAM heading display as OW Riva CAM.

Default-lglfn

By default, all L+G LFN (limited function node) battery endpoints are members of this group.

Default-lgelectric

By default, all L+G electric endpoints are members of this group.

Default-lgnn

By default, all L+G grid management endpoints are members of this group.

Default-lgrouter

By default, all L+G routers are members of this group.

Default-ir800

By default, all IR807s, IR809s, and IR829s (ROUTER) are members of this group.

Default-cgmesh

By default, all crmesh endpoints (ENDPOINT) are members of this group.

Default-cgr1000

By default, all CGRs (ROUTER) are members of this group.

Default-sbr

By default, all ESRs (ROUTER) are members of this group. This product is also identified as C5921.

Default-ir500

By default, all IR500s (ENDPOINT) are members of this group.

Default-lorawan

By default all LoRaWAN Gateways (IOT GATEWAY) are members of this group.

Default-ir1100

By default, all IR1100 (ROUTER) are members of this group.

Default-ir8100

By default, all IR8100 (ROUTER) are members of this group.

Default-ir1800

By default, all IR1800 (ROUTER) are members of this group.

Each default group defines a default configuration template that you can push to all devices in that group. However, if you need to apply a different template to a group of devices, create a new group and modify its default configuration template as needed.


Note


You cannot delete the default groups, but you can change their names, although we do not recommend it. Also, the default ROUTER and ENDPOINT groups use the same icon, while custom groups use a different icon.

Creating ROUTER Groups


Note


CGRs, IR800s, C5921s (SBR) can coexist on a network; however, you must create custom templates that include all router types.


To create a router configuration group:

Procedure

Step 1

Choose CONFIG > Device Configuration.

Step 2

Select the default configuration group: Default-cgr1000, Default-ir800, , Default-ir1100, Default-ir8100, Default-ir1800, Default-sbr, or Default-lgrouter.

Step 3

With the Groups tab selected (top, left pane of page), click the + icon (under the heading) to open the Add Group entry panel.

Step 4

Enter the name of the group. The Device Category auto-fills router by default.

Note

 

If you enter invalid characters (for example, “=”, “+”, and “~”), IoT FND displays a red alert icon, highlights the field in red, and disables the Add button.

Step 5

Click Add.

The new group entry appears in the ROUTER list (left pane).


What to do next

Creating Endpoint Groups

To create an endpoint configuration group:

Procedure

Step 1

Choose CONFIG > Device Configuration.

Step 2

Select the default group (Default-act, Default-bact, Default-cam, Default-cgmesh, Default-ir500, Default-lglfn, Default-lgelectric, Default-lgnn).

Step 3

With the Groups tab selected (top, left panel of page), click the + icon (under the heading) to open the Add Group entry panel.

Note

 

The device category (such as endpoint or router) auto-populates.

Step 4

Enter a name for the group. The device category (endpoint, gateway, or router) auto-populates.

Note

 

If you enter invalid characters (for example, “=”, “+”, and “~”), IoT FND displays a red alert icon, highlights the field in red, and disables the OK button.

Step 5

Click Add.

The new group entry appears in the appropriate device category list (left pane).


What to do next

Changing Device Configuration Properties

You can change the configurable properties of devices by uploading a Device Properties CSV file with modified values for the devices.

To change device configuration properties:

Procedure

Step 1

Choose CONFIG > Device Configuration.

Step 2

Click Change Device Properties.

Step 3

Click Browse and select the Device Properties CSV or XML file to upload

Step 4

Click Change.

Step 5

Click Close when done.

For a list of configurable device properties in IoT FND, see Device Properties.


Configuring Periodic Inventory Timer

To configure the periodic inventory timer for a ROUTER configuration group:

Procedure

Step 1

Click CONFIG > DEVICE CONFIGURATION.

Step 2

Select a ROUTER configuration group from the left pane.

Step 3

Click Edit Configuration Template to configure the periodic inventory notification interval in the template. The default periodic inventory notification interval is 60 minutes for routers and 8 hours for endpoints.

Note

 
We recommend you to use the default periodic value. However, you can also customize the periodic interval, but the value that is defined should be more than the default value of 60 minutes and not less. For example, if you want to enable the periodic inventory notification to report metrics every 120 minutes, then add the following lines to the template:
<#-- Enable periodic inventory notification every 2 hours to report metrics. -->
cgna profile cg-nms-periodic
      interval 120
    exit

Step 4

Click the disk icon to save the changes.


Configuring Heartbeat Notification

To configure the heartbeat notification for a ROUTER configuration group:

Procedure

Step 1

Click CONFIG > DEVICE CONFIGURATION.

Step 2

Select a ROUTER configuration group from the left pane.

Step 3

Click Edit Configuration Template to configure the heartbeat notification interval in the template. The default heartbeat notification interval is 15 minutes.

Note

 
We recommend you to use the default heartbeat value. However, you can also customize the default value, but the value that is defined should be more than default value and not less. For example, if you want to enable the heartbeat notification every 30 minutes, then add the following lines to the template:
 cgna heart-beat interval 30

Note

 

Ensure that the heartbeat interval is less than the mark-down timer value set by you. For more information on the device mark-down timer, refer to Configuring Mark-Down Timer.

Step 4

Click the disk icon to save the changes.


Configuring Mark-Down Timer

The Group Properties page allows you to set the mark-down timer value for a default or user-defined configuration group of a router, endpoint, or gateway. The mark-down timer value that you set must be greater than the heartbeat value defined in the Edit Configuration Template.

Based on the heartbeat value received from the device every few minutes, IoT FND updates the last heard value of the device in the Device Info page (DEVICES > Field Devices > ROUTER).

If the last heard value is greater than the device mark-down value, then IoT FND marks the device state as Down in the IoT FND GUI. However, before marking the device Down, IoT FND must check the status of the tunnel interface that is associated with the device. If the tunnel interface is Down as well, then IoT FND marks the device state as Down. If the tunnel interface state is Up, then IoT FND must wait until the tunnel interface state goes Down as well before marking the device as Down in the IoT FND GUI.

To configure the mark-down timer for a ROUTER configuration group:

Procedure

Step 1

Click CONFIG > DEVICE CONFIGURATION.

Step 2

Select a ROUTER configuration group from the left pane.

Step 3

Click Group Properties.

Step 4

In the Mark Routers Down After field, enter the number of seconds after which the IoT FND marks the device Down if it does not receive the heartbeat value from the device during the specified heartbeat time interval.

Note

 

Ensure that the periodic configuration notification frequency in the configuration template is less than the value you entered in the Mark Routers Down After field. We recommend 1:3 ratio of heartbeat interval to mark-down timer. For more information on configuring the heartbeat interval, refer to Configuring Heartbeat Notification.

Step 5

Click the disk icon to save changes.


Renaming a Device Configuration Group

In the Device Configuration page, there are two device configuration groups available, namely user-defined groups and default groups of router, endpoint, or gateway. IoT FND allows you to rename the user-defined device configuration groups only. You cannot rename the default device configuration groups.

To rename a device configuration group:

Procedure

Step 1

Choose CONFIG > Device Configuration.

Step 2

Select a group from the list of configuration groups (left pane).

Step 3

Hover over the name of the group in the list. A pencil icon appears.

Note

 

Starting with Cisco IoT FND 4.8 release, the default device configuration groups cannot be renamed, whereas the user-defined device configuration groups can be renamed. The pencil icon does not appear for the default device configuration groups.

Step 4

Click the pencil icon to open the Edit Group panel.

Step 5

Enter the new name in the Rename Group dialog box, and then click OK.

Note

 

If you enter invalid characters (for example, “=”, “+”, and “~”), IoT FND displays a red alert icon, highlights the field in red, and disables the OK button.


Deleting Device Groups


Note


Before deleting a group, move all devices in that group to another group. You cannot delete a non-empty group.

To delete a configuration group:


Procedure

Step 1

Choose CONFIG > Device Configuration.

Step 2

Select a group from the list of configuration groups (left pane)

Step 3

Ensure that the group is empty.

Step 4

Click Delete Group (-).

The Delete icon displays as a red minus sign when you hover over the name of the group in the list.

Step 5

Click Yes to confirm, and then click OK.


Moving Devices to Another Group

There are two ways to move devices from one configuration group to another:

Moving Devices to Another Configuration Group Manually

To move devices to another configuration group:

Procedure

Step 1

Choose CONFIG > Device Configuration.

Step 2

Select a group from the list of configuration groups (left pane).

Step 3

Select the check box of the devices to move.

Step 4

Click Change Configuration Group.

Step 5

From the drop-down menu in the dialog box, choose the target group for the devices.

Step 6

Click Change Config Group.

Step 7

Click OK.


Moving Devices to Another Configuration Group in Bulk

To move a large number of devices from one group to another, you can import a CSV file containing the list of the devices to move.

For example, this CSV file specifies the EIDs of three CGRs to move:

eid
CGR1120/k9+JS1
CGR1120/k9+JS2
CGR1120/k9+JS3

To move devices to another configuration group in bulk:

Procedure

Step 1

Choose CONFIG > Device Configuration.

Step 2

Click Assign Devices to Group.

Step 3

Click Browse to locate the CSV or XML file containing the list of devices to move, and then click Open.

Step 4

From the Group drop-down menu, choose the target group for the devices.

Step 5

Click Assign to Group.

Step 6

Click OK.


Listing Devices in a Configuration Group

To list the devices in a configuration group:

Procedure

Step 1

Choose CONFIG > Device Configuration.

Step 2

Select a group from the list of configuration groups (left pane).

Step 3

To get more information about a device in the list, click its EID (for example: CGR1240/K9+JAF1723AHGD)


Synchronizing Endpoint Membership

Endpoints maintain information about the IoT FND group to which they belong. If the group information changes, the endpoint becomes out of sync. For example, if you rename an endpoint group, the members of the group might not be modified immediately (for example, due to a packet loss). If a device is out of sync, any operation you perform on the group through IoT FND does not reach the device. To ensure that the endpoints remain in sync, use the Sync Membership button to push the group information to group members.


Note


Devices sync for the first time after they register with IoT FND


To send group information to endpoints:

Procedure


Step 1

Choose CONFIG > Device Configuration

Step 2

Select an ENDPOINT group (left pane) such as Default-cgmesh.

Step 3

Select the Group Members tab (right pane), click on the name of an endpoint. (Note: The Group Members tab is a new addition to this page).

Step 4

Click Sync Config Membership button on the page that appears.

Step 5

When prompted, click Yes to confirm synchronization.

Step 6

Click OK.


Editing the ROUTER Configuration Template

IoT FND lets you configure routers in bulk using a configuration template. When a router registers with IoT FND, IoT Field Network Director pushes the configuration defined in the default template to the device and commits the changes to the router startup configuration. IoT FND then retrieves the running configuration from the router before changing the device status to Up.

To edit a ROUTER group configuration template:

Procedure


Step 1

Choose CONFIG > Device Configuration.

Step 2

Under CONFIGURATION GROUPS (left pane), select the group with the template to edit.

Step 3

Click Edit Configuration Template

Step 4

Edit the template.

The template is expressed in FreeMarker syntax

Note

 

The router configuration template does not validate the configuration data entered. Verify the configuration before saving.

Step 5

Click Save Changes.


What to do next

IoT FND commits the changes to the database and increases the template version number.

Editing the AP Configuration Template

To edit an AP group configuration template:

Procedure


Step 1

Choose CONFIG > Device Configuration.

Step 2

Under CONFIGURATION GROUPS (left pane), select the device group with embedded AP devices with the template to edit.

Step 3

Click Edit AP Configuration Template.

Step 4

Edit the template.

The template is expressed in FreeMarker syntax. For more information about FreeMarker, go to http://freemarker.org/.

AP TEMPLATE EXAMPLE
ip dhcp pool TEST_POOL
network 10.10.10.0 255.255.255.0
default-router 10.10.10.1
lease infinite
!
dot11 ssid GUEST_SSID
authentication open
authentication key-management wpa
wpa-psk ascii 0 12345678
guest-mode
!
interface Dot11Radio0
no ip address
encryption mode ciphers aes-ccm
ssid GUEST_SSID
!
interface Dot11Radio0
no ip address
encryption mode ciphers aes-ccm
ssid GUEST_SSID

Note

 

The AP configuration template does not validate the configuration data entered. Verify the configuration before saving.

.

Step 5

Click Save Changes.


What to do next


Note


IoT FND commits the changes to the database and increases the template revision number.


Configuration Details for WPAN Devices

The following examples retrieve the current Dual-PHY WPAN device RPL slot tree, RPL slot table, RPL IP route info table, and configuration information for slots 4/1 and 3/1.


cisco-FAR5#show run int wpan 4/1
Building configuration... 
Current configuration : 320 bytes
!
interface Wpan4/1
 no ip address
 ip broadcast-address 0.0.0.0
 no ip route-cache
 ieee154 beacon-async min-interval 100 max-interval 600 suppression-coefficient 1
 ieee154 panid 5552
 ieee154 ssid ios_far5_plc
 ipv6 address 2001:RTE:RTE:64::4/64
 ipv6 enable
 ipv6 dhcp relay destination  2001:420:7BF:5F::500
end
cisco-FAR5#show run int wpan 3/1
Building configuration...
Current configuration : 333 bytes
!
interface Wpan3/1
 no ip address
 ip broadcast-address 0.0.0.0
 no ip route-cache
 ieee154 beacon-async min-interval 120 max-interval 600 suppression-coefficient 1
 ieee154 panid 5551
 ieee154 ssid ios_far5_rf
 slave-mode 4
 ipv6 address 2001:RTE:RTE:65::5/64
 ipv6 enable
 ipv6 dhcp relay destination  2001:420:7BF:5F::500
end
cisco-FAR5#show wpan 4/1 rpl stree
----------------------------- WPAN RPL SLOT TREE [4] -----------------------------
  [2001:RTE:RTE:64::4]
           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1800    // SY RF nodes
           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1801
                   \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1A00
           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1802
           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1803
           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1804
\--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1805
                   \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1A03
                   \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1A07
           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1806
           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1807
           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1808
           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1809
           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:180A
           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:180B
                   \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1A01
                           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1C05
                           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1C06
                           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1C07
                   \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1A02
                   \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1A04
                   \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1A05
                           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1C03
                           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1C08
                           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1C09
                           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1C0A
                   \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1A06
                           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1C02
                           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1C04
                   \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1A08
                   \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1A09
                   \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1A0A
                           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1C00
                           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1C01
                           \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1C0B
                   \--(RF )-- 2001:RTE:RTE:64:207:8108:3C:1A0B
           \--(PLC)-- 2001:RTE:RTE:64:217:3BCD:26:4E00    // CY PLC nodes
           \--(PLC)-- 2001:RTE:RTE:64:217:3BCD:26:4E01
           \--(PLC)-- 2001:RTE:RTE:64:217:3BCD:26:4E02
           \--(PLC)-- 2001:RTE:RTE:64:217:3BCD:26:4E03
           \--(PLC)-- 2001:RTE:RTE:64:217:3BCD:26:4E04
           \--(PLC)-- 2001:RTE:RTE:64:217:3BCD:26:4E05
           \--(PLC)-- 2001:RTE:RTE:64:217:3BCD:26:4E06
           \--(PLC)-- 2001:RTE:RTE:64:217:3BCD:26:4E07
RPL SLOT TREE: Num.DataEntries 44, Num.GraphNodes 45 (external 0) (RF 36) (PLC 8)
cisco-FAR5#ping
 2001:RTE:RTE:64:217:3BCD:26:4E01
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:RTE:RTE:64:217:3BCD:26:4E01, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 254/266/294 ms
cisco-FAR5#ping
 2001:RTE:RTE:64:207:8108:3C:1C00
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:RTE:RTE:64:207:8108:3C:1C00, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 272/441/636 ms
cisco-FAR5#
cisco-FAR5#show wpan 4/1 rpl stable
               
------------------------------ WPAN RPL ROUTE SLOT TABLE [4] ------------------------------
NODE_IPADDR                   NEXTHOP_IP                    SSLOT LAST_HEARD
2001:RTE:RTE:64:207:8108:3C:1800        2001:RTE:RTE:64::4                      3      17:49:12    // SY RF nodes
2001:RTE:RTE:64:207:8108:3C:1801        2001:RTE:RTE:64::4                      3      18:14:05
2001:RTE:RTE:64:207:8108:3C:1802        2001:RTE:RTE:64::4                      3      18:14:37
2001:RTE:RTE:64:207:8108:3C:1803        2001:RTE:RTE:64::4                      3      17:56:56
2001:RTE:RTE:64:207:8108:3C:1804        2001:RTE:RTE:64::4                      3      17:48:53
2001:RTE:RTE:64:207:8108:3C:1805        2001:RTE:RTE:64::4                      3      17:47:52
2001:RTE:RTE:64:207:8108:3C:1806        2001:RTE:RTE:64::4                      3      17:49:54
2001:RTE:RTE:64:207:8108:3C:1807        2001:RTE:RTE:64::4                      3      17:46:38
2001:RTE:RTE:64:207:8108:3C:1808        2001:RTE:RTE:64::4                      3      18:22:01
2001:RTE:RTE:64:207:8108:3C:1809        2001:RTE:RTE:64::4                      3      17:50:02
2001:RTE:RTE:64:207:8108:3C:180A        2001:RTE:RTE:64::4                      3      17:50:02
2001:RTE:RTE:64:207:8108:3C:180B        2001:RTE:RTE:64::4                      3      18:24:00
2001:RTE:RTE:64:207:8108:3C:1A00        2001:RTE:RTE:64:207:8108:3C:1801        3      17:56:34
2001:RTE:RTE:64:207:8108:3C:1A01        2001:RTE:RTE:64:207:8108:3C:180B        3      18:27:34
2001:RTE:RTE:64:207:8108:3C:1A02        2001:RTE:RTE:64:207:8108:3C:180B        3      18:03:06
2001:RTE:RTE:64:207:8108:3C:1A03        2001:RTE:RTE:64:207:8108:3C:1805        3      18:25:18
2001:RTE:RTE:64:207:8108:3C:1A04        2001:RTE:RTE:64:207:8108:3C:180B        3      17:57:15
2001:RTE:RTE:64:207:8108:3C:1A05        2001:RTE:RTE:64:207:8108:3C:180B        3      18:23:39
2001:RTE:RTE:64:207:8108:3C:1A06        2001:RTE:RTE:64:207:8108:3C:180B        3      18:04:16
2001:RTE:RTE:64:207:8108:3C:1A07        2001:RTE:RTE:64:207:8108:3C:1805        3      17:55:00
2001:RTE:RTE:64:207:8108:3C:1A08        2001:RTE:RTE:64:207:8108:3C:180B        3      18:19:35
2001:RTE:RTE:64:207:8108:3C:1A09        2001:RTE:RTE:64:207:8108:3C:180B        3      18:02:02
2001:RTE:RTE:64:207:8108:3C:1A0A        2001:RTE:RTE:64:207:8108:3C:180B        3      18:18:00
2001:RTE:RTE:64:207:8108:3C:1A0B        2001:RTE:RTE:64:207:8108:3C:180B        3      18:02:46
2001:RTE:RTE:64:207:8108:3C:1C00        2001:RTE:RTE:64:207:8108:3C:1A0A        3      18:22:03
2001:RTE:RTE:64:207:8108:3C:1C01        2001:RTE:RTE:64:207:8108:3C:1A0A        3      18:24:03
2001:RTE:RTE:64:207:8108:3C:1C02        2001:RTE:RTE:64:207:8108:3C:1A06        3      18:25:03
2001:RTE:RTE:64:207:8108:3C:1C03        2001:RTE:RTE:64:207:8108:3C:1A05        3      18:15:05
2001:RTE:RTE:64:207:8108:3C:1C04        2001:RTE:RTE:64:207:8108:3C:1A06        3      18:24:05
2001:RTE:RTE:64:207:8108:3C:1C05        2001:RTE:RTE:64:207:8108:3C:1A01        3      18:10:02
2001:RTE:RTE:64:207:8108:3C:1C06        2001:RTE:RTE:64:207:8108:3C:1A01        3      18:05:03
2001:RTE:RTE:64:207:8108:3C:1C07        2001:RTE:RTE:64:207:8108:3C:1A01        3      18:11:03
2001:RTE:RTE:64:207:8108:3C:1C08        2001:RTE:RTE:64:207:8108:3C:1A05        3      18:15:05
2001:RTE:RTE:64:207:8108:3C:1C09        2001:RTE:RTE:64:207:8108:3C:1A05        3      18:15:04
2001:RTE:RTE:64:207:8108:3C:1C0A        2001:RTE:RTE:64:207:8108:3C:1A05        3      18:15:04
2001:RTE:RTE:64:207:8108:3C:1C0B        2001:RTE:RTE:64:207:8108:3C:1A0A        3      18:24:03
2001:RTE:RTE:64:217:3BCD:26:4E00        2001:RTE:RTE:64::4                      4      18:21:40
// CY PLC nodes
2001:RTE:RTE:64:217:3BCD:26:4E01        2001:RTE:RTE:64::4                      4      17:47:23
2001:RTE:RTE:64:217:3BCD:26:4E02        2001:RTE:RTE:64::4                      4      18:20:16
2001:RTE:RTE:64:217:3BCD:26:4E03        2001:RTE:RTE:64::4                      4      17:49:07
2001:RTE:RTE:64:217:3BCD:26:4E04        2001:RTE:RTE:64::4                      4      18:21:49
2001:RTE:RTE:64:217:3BCD:26:4E05        2001:RTE:RTE:64::4                      4      18:22:06
2001:RTE:RTE:64:217:3BCD:26:4E06        2001:RTE:RTE:64::4                      4      18:22:51
2001:RTE:RTE:64:217:3BCD:26:4E07        2001:RTE:RTE:64::4                      4      18:24:04
 
Number of Entries in WPAN RPL ROUTE SLOT TABLE: 44 (external 0)
cisco-FAR5#show wpan 4/1 rpl itable
----------------------------- WPAN RPL IPROUTE INFO TABLE [4] -----------------------------
NODE_IPADDR                   RANK  VERSION     NEXTHOP_IP                    ETX_P      ETX_LRSSIR  RSSIF HOPS  PARENTS     SSLOT
2001:RTE:RTE:64:207:8108:3C:1800        835   1     2001:RTE:RTE:64::4                      0     762   -67   -71   1     1     3    // SY RF nodes
2001:RTE:RTE:64:207:8108:3C:1801        692   2     2001:RTE:RTE:64::4                      0     547   -68   -67   1     1     3
2001:RTE:RTE:64:207:8108:3C:1802        776   2     2001:RTE:RTE:64::4                      0     711   -82   -83   1     1     3
2001:RTE:RTE:64:207:8108:3C:1803        968   2     2001:RTE:RTE:64::4                      0     968   -72   -63   1     1     3
2001:RTE:RTE:64:207:8108:3C:1804        699   1     2001:RTE:RTE:64::4                      0     643   -71   -66   1     1     3
2001:RTE:RTE:64:207:8108:3C:1805        681   1     2001:RTE:RTE:64::4                      0     627   -70   -64   1     1     3
2001:RTE:RTE:64:207:8108:3C:1806        744   1     2001:RTE:RTE:64::4                      0     683   -69   -68   1     1     3
2001:RTE:RTE:64:207:8108:3C:1807        705   1     2001:RTE:RTE:64::4                      0     648   -76   -63   1     1     3
2001:RTE:RTE:64:207:8108:3C:1808        811   2     2001:RTE:RTE:64::4                      0     811   -68   -69   1     2     3
2001:RTE:RTE:64:207:8108:3C:1809        730   1     2001:RTE:RTE:64::4                      0     692   -68   -70   1     1     3
2001:RTE:RTE:64:207:8108:3C:180A        926   1     2001:RTE:RTE:64::4                      0     926   -66   -68   1     1     3
2001:RTE:RTE:64:207:8108:3C:180B        602   2     2001:RTE:RTE:64::4                      0     314   -74   -69   1     1     3
2001:RTE:RTE:64:207:8108:3C:1A00        948   1     2001:RTE:RTE:64:207:8108:3C:1801        692   256   -73   -75   2     1     3
2001:RTE:RTE:64:207:8108:3C:1A01        646   2     2001:RTE:RTE:64:207:8108:3C:180B        323   256   -73   -75   2     3     3
2001:RTE:RTE:64:207:8108:3C:1A02        948   1     2001:RTE:RTE:64:207:8108:3C:180B        602   256   -73   -75   2     2     3
2001:RTE:RTE:64:207:8108:3C:1A03        803   2     2001:RTE:RTE:64:207:8108:3C:1805        503   256   -68   -78   2     3     3
2001:RTE:RTE:64:207:8108:3C:1A04        858   1     2001:RTE:RTE:64:207:8108:3C:180B        602   256   -65   -69   2     1     3
2001:RTE:RTE:64:207:8108:3C:1A05        646   2     2001:RTE:RTE:64:207:8108:3C:180B        323   256   -71   -69   2     2     3
2001:RTE:RTE:64:207:8108:3C:1A06        858   1     2001:RTE:RTE:64:207:8108:3C:180B        602   256   -73   -75   2     2     3
2001:RTE:RTE:64:207:8108:3C:1A07        979   1     2001:RTE:RTE:64:207:8108:3C:1805        627   352   -71   -73   2     1     3
2001:RTE:RTE:64:207:8108:3C:1A08        646   2     2001:RTE:RTE:64:207:8108:3C:180B        390   256   -75   -70   2     3     3
2001:RTE:RTE:64:207:8108:3C:1A09        948   1     2001:RTE:RTE:64:207:8108:3C:180B        602   256   -70   -69   2     3     3
2001:RTE:RTE:64:207:8108:3C:1A0A        646   2     2001:RTE:RTE:64:207:8108:3C:180B        390   256   -75   -71   2     2     3
2001:RTE:RTE:64:207:8108:3C:1A0B        858   1     2001:RTE:RTE:64:207:8108:3C:180B        602   256   -68   -68   2     2     3
2001:RTE:RTE:64:207:8108:3C:1C00        902   2     2001:RTE:RTE:64:207:8108:3C:1A0A        646   256   -70   -74   3     1     3
2001:RTE:RTE:64:207:8108:3C:1C01        902   2     2001:RTE:RTE:64:207:8108:3C:1A0A        646   256   -71   -72   3     1     3
2001:RTE:RTE:64:207:8108:3C:1C02        1114  1     2001:RTE:RTE:64:207:8108:3C:1A06        858   256   -74   -73   3     1     3
2001:RTE:RTE:64:207:8108:3C:1C03        1114  1     2001:RTE:RTE:64:207:8108:3C:1A05        858   256   -76   -77   3     1     3
2001:RTE:RTE:64:207:8108:3C:1C04        902   2     2001:RTE:RTE:64:207:8108:3C:1A06        646   256   -75   -68   3     2     3
2001:RTE:RTE:64:207:8108:3C:1C05        1114  1     2001:RTE:RTE:64:207:8108:3C:1A01        858   256   -66   -74   3     1     3
2001:RTE:RTE:64:207:8108:3C:1C06        1114  1     2001:RTE:RTE:64:207:8108:3C:1A01        858   256   -74   -72   3     1     3
2001:RTE:RTE:64:207:8108:3C:1C07        1114  1     2001:RTE:RTE:64:207:8108:3C:1A01        858   256   -70   -75   3     1     3
2001:RTE:RTE:64:207:8108:3C:1C08        1114  1     2001:RTE:RTE:64:207:8108:3C:1A05        858   256   -74   -70   3     1     3
2001:RTE:RTE:64:207:8108:3C:1C09        1114  1     2001:RTE:RTE:64:207:8108:3C:1A05        858   256   -70   -74   3     1     3
2001:RTE:RTE:64:207:8108:3C:1C0A        1114  1     2001:RTE:RTE:64:207:8108:3C:1A05        858   256   -70   -69   3     1     3
2001:RTE:RTE:64:207:8108:3C:1C0B        902   2     2001:RTE:RTE:64:207:8108:3C:1A0A        646   256   -76   -74   3     1     3
2001:RTE:RTE:64:217:3BCD:26:4E00        616   2     2001:RTE:RTE:64::4                      0     616   118   118   1     1     4    // CY PLC nodes
2001:RTE:RTE:64:217:3BCD:26:4E01        702   1     2001:RTE:RTE:64::4                      0     646   118   118   1     1     4
2001:RTE:RTE:64:217:3BCD:26:4E02        557   2     2001:RTE:RTE:64::4                      0     557   118   118   1     1     4
2001:RTE:RTE:64:217:3BCD:26:4E03        626   1     2001:RTE:RTE:64::4                      0     579   118   118   1     1     4
2001:RTE:RTE:64:217:3BCD:26:4E04        609   2     2001:RTE:RTE:64::4                      0     609   118   118   1     1     4
2001:RTE:RTE:64:217:3BCD:26:4E05        602   2     2001:RTE:RTE:64::4                      0     602   118   118   1     1     4
2001:RTE:RTE:64:217:3BCD:26:4E06        594   2     2001:RTE:RTE:64::4                      0     594   118   118   1     1     4
2001:RTE:RTE:64:217:3BCD:26:4E07        584   2     2001:RTE:RTE:64::4                      0     584   118   118   1     1     4
Number of Entries in WPAN RPL IPROUTE INFO TABLE: 44

Enabling Router GPS Tracking

You can enable GPS traps to trigger an event if the router moves a distance threshold, after a time threshold, or both. For example, you can configure stationary, pole-top CGR monitoring for a distance threshold, to detect movement from theft or pole incident; for mobile routers, set both thresholds to determine distance over time. The recommended distance threshold is 100 feet (30 m).

To enable GPS traps, uncomment these lines in the default configuration template.


<#-- 
Enable the following configurations to generate events that track if the router 
moves by a certain distance (unit configurable) or within a certain time (in minutes) 
-->
<#-- cgna geo-fence interval 10 -->
<#-- cgna geo-fence distance-threshold 100 -->
<#-- cgna geo-fence threshold-unit foot -->
<#-- cgna geo-fence active -->

Note


Because GPS traps only generate Informational logs, we recommend that you create a rule-based event with high severity (such as CRITICAL) to inform the administrator of router movement. An example of this type of rule definition is: configGroup:name eventName:deviceLocChanged (see Creating a Rule)


Configuring SNMP v3 Informational Events

For Cisco IOS routers you configure SNMP v3 Informational Events to replace the default SNMP v3 traps. For Cisco IOS routers, converting these SNMP v3 traps to SNMP v3 Informational Events sends an acknowledgment to the router for every event received from the router. The router then verifies that the trap was received by IoT FND. To enable SNMP v3 Informational Events, uncomment the following lines in the default configuration file and push the new configuration file to all router(s) in the group:


<#-- Enable the following configurations for the nms host to receive informs 
instead of traps -->
<#-- no snmp-server host ${nms.host} traps version 3 priv ${far.adminUsername} -->
<#-- snmp-server engineID remote ${nms.host} ${nms.localEngineID} -->
<#-- snmp-server user ${far.adminUsername} cgnms remote ${nms.host} v3 auth sha 
${far.adminPassword} priv aes 256 ${far.adminPassword} -->
<#-- snmp-server host ${nms.host} informs version 3 
priv ${far.adminUsername} -->

Support of Dual WPAN for IR8100

Cisco IoT FND supports dual Wireless Personal Area Network (WPAN) on IR8100 routers. The Dual WPAN support allows you to add more endpoints to the router. You can insert the WPAN modules in any of the three available UIM slots in IR8100 router. IoT FND uses the slot number in which the module is inserted for mapping the inventory details of the respective WPAN interface. In IoT FND, WPAN related information for the WPAN inserted in slot number 1 is displayed by default. The WPAN related information for the WPAN inserted in slot 2 or slot 3 are suffixed with corresponding slot number. For example, the Tx speed of the WPAN inserted in slot 1 is Mesh Tx, Tx speed of the WPAN inserted in slot 2 is Mesh Tx2, and the Tx speed of the WPAN inserted in slot 3 is Mesh Tx3.


Note


All the parameters related to WPAN are displayed based on the slot number whereas user configurable parameters are displayed based on the number of the interface.


The user configurable parameters are not mapped according to the slot number. The existing user configurable parameters represent the configurable parameters of first WPAN and the existing name with suffix 2 represents configurable parameters of second WPAN (for example, meshPrefixConfig, meshPrefixConfig2).


Note


We recommend you to reregister the device after WPAN addition or removal.



Note


Cisco IoT FND 4.8.1 supports dual WPAN feature for IR8100 with firmware version greater than or equal to 17.08.01. IoT FND maps the properties or metrics of WPAN based on the slot number in which it is inserted. However, if the firmware version of registered IR8100 is less than 17.08.01, IoT FND processes the properties or metrics the same way as it does for single WPAN i.e., the mapping is not based on slot number. For example, though the WPAN is inserted in slot 2 of the IR8100 with firmware version <17.08.01, the related properties or metrics always point to a set of attributes without the slot number suffix.

This leads to the following scenarios:

  • With IoT FND 4.8.1, the firmware upgrade of IR8100 from version < 17.08.01 to a version >=17.08.01 leads the existing WPAN module to map the respective properties or metrics based on slot number. So the historic properties or metrics of the same IR8100 are mapped to one set of mesh properties or metrics (without slot number suffix) and the latest data is mapped to slot specific properties or metrics set.

  • After the IoT FND 4.8.1 upgrade process, the already registered IR8100 device with firmware version >= 17.08.01 starts to use the properties or metrics of the WPAN based on slot number. However, the historic properties or metrics of the same IR8100 is already mapped to existing set of mesh properties or metrics (without the slot number suffix).


Limitations

High Availability feature in WPAN is not supported by IR8100 and so it is not supported for dual WPAN.

Table 11. Feature History
Feature Name Release Information Description

Support of Dual WPAN for IR8100

IoT FND 4.8.1

Cisco IoT FND 4.8.1 supports dual WPAN on IR8100 routers. The dual WPAN support allows you to add more endpoints to the router. You can insert the WPAN modules in any of the three available UIM slots in IR8100 router.

Prerequisites for Dual WPAN

The following are the prerequisites to support dual WPAN in IR8100:

  • The dual WPAN interfaces are configured with: different PAN IDs and IPv6 prefixes, and same SSID or different SSID.

  • Both WPANs must be in Active-Active state and in either WiSUN or CRMESH mode.


    Note


    Mix of stack modes is not supported.


Support of Dual WPAN in Field Device Page

Select DEVICES > FIELD DEVICES. The FAN view is visible where all the devices are listed. You can view WPAN related information in this Field Device page.


Note


If WPAN is not inserted in slot 1, then all the columns appear empty. If the WPAN is inserted in either slot 2 or slot 3, you can view WPAN related parameters by adding them. For more information, see Adding Device Views. This displays the respective parameters related to WPAN inserted in either slot 2 or slot 3.


  • In the FAN device view, you can view PANID 2 and PANID 3 columns in the Inventory tab that indicates the meshPanID parameter of WPAN that is inserted in either slot 2 or slot 3.


    Note


    If the WPAN module is not inserted in the respective slot, the corresponding column appears empty. The PANID 2 and PANID 3 columns appear empty for other devices.


  • To add user configurable parameters for both the WPAN interfaces:

    • Upload a csv file from the device list page. For more information on uploading csv, see Changing Device Properties in Bulk.

    • After uploading, navigate to DEVICES > FIELD DEVICES > Browse Devices tab > IR8100. Click Mesh Config tab to view the uploaded values. or

      Navigate to DEVICES > FIELD DEVICES > Browse Devices tab > IR8100. Click the device on the right pane to view the device information. Go to Config Properties tab to view the Mesh Link Config details displayed for both the WPANs with the parameters suffixed according to the slot number.

Support of Dual WPAN in Router Device View

In the DEVICES > FIELD DEVICES page, select Router group in the Browse Devices tab.The Mesh Count column indicates the number of endpoints connected in the WPAN 0/1/0 inserted in slot 1. By default, the Mesh Count column is displayed. The mesh count 2 and mesh count 3 columns indicate the number of endpoints that are connected to WPAN 0/2/0 and WPAN 0/3/0. The mesh count 2 and mesh count 3 columns can be added in the Field Device page by choosing them to be in the default view. For more information, see Adding Device Views.

Support of Dual WPAN in IR8100 Device View

In the DEVICES > FIELD DEVICES page, select IR8100 under Router category in the Browse Devices tab.

In the Inventory tab, the IR8100 device view displays the parameters for the WPAN inserted in slot 1 by default. The Mesh tab and Mesh Config tab show the existing properties related to WPAN inserted in slot 1.

Additional WPAN parameters are included for the WPANs that are inserted in other slots. You can view the additional attributes by customizing your default view. To add a new tab or edit the existing default view:

  • Click + to create a new tab and add WPAN related fields. or

  • Click the drop-down list near the Mesh tab or Mesh Config tab to edit the current view and add WPAN specific fields. This helps to view WPAN related details specific to WPAN 0/2/0 or WPAN 0/3/0. For more information, see Customizing Device Views.

Using Filters to View Additional Dual WPAN Fields

The newly added WPAN parameters are available in the show filter. You can choose the show filter based on the slot number in which the WPAN is inserted.

Procedure

Step 1

Click Show Filters in the default view.

Step 2

Select the WPAN parameters from the drop-down list and enter the search criteria. The search results are displayed in the page accordingly. For more information on filters, see Using Router Filters.


Support of Dual WPAN on Device Details Page

To view dual WPAN related information associated with IR8100,

Procedure


Step 1

Choose DEVICES > FIELD DEVICES > Browse Devices tab.

Step 2

Select IR8100 router group on the left pane.

Step 3

Click the IR8100 device on the right pane.

The device details page displays information for the selected device.


Viewing Device Info Tab

  • The Mesh Link Settings, Mesh Link Metrics, and Mesh Link Keys section displays the values of the various parameters which are retrieved from both the WPANs. Under each section, the columns with WPAN interface name are displayed and the respective value of the parameters is listed under the respective column. The following view displays the parameter values of the WPANs inserted in slot 1 and 3. For more information on Mesh Link Settings, see Link Settings. For more information on Mesh Link Metrics, see Link Metrics. For more information on Mesh Link Keys, see Mesh Link Keys.

  • The Network Interface table in the Device Info page provides the details of both the WPAN interfaces that are connected in any of the three available slots.

    The following table describes the Network Interface fields in the Device Info page.

    Field Description

    Interface

    Indicates the name of the interface

    Admin Status

    Provides admin status (up/down)

    Oper. Status

    Provides operational status (up/down)

    IP Address

    Indicates the IP address of the device

    Physical Address

    Indicates the latitude and longitude of the device

    Tx Speed (bps)

    Indicates the speed (bits/sec) of data transmitted by the interface

    Tx Drops (bps)

    Indicates the number of packets dropped (drops/sec)

    Rx Speed (bps)

    Indicates the speed (bits/sec) of data received by the interface


    Note


    The IR8100 device is connected to CAM module through new virtual port group interface which is processed to retrieve information of the RPL tree. Based on the settings in the RPL tree, the mesh routing tree is displayed.


  • The Device Info tab displays Mesh Link Traffic chart according to the time period selected on the top-right side of the page. The information given in the chart is colour coded to distinguish the slot in which the WPAN is inserted. For example, the colour used for Tx or Rx speed of WPAN in slot 1 is different from that of WPAN in slot 2.


    Note


    Click on colour code and the respective line in the chart is removed from the graph. This applies for all the charts.


  • The endpoint count chart shows the aggregated endpoint count which is connected to both the WPAN interfaces as well as individual endpoint count from each WPAN interface. Three new colour codes are added to indicate the WPANs connected in slot one, two, and three. The Total Endpoint Count shows the sum of endpoints connected in both the WPANs whereas Endpoint Count shows the number of endpoints connected in the WPAN that is inserted in slot 1. Endpoint Count 2 and Endpoint Count 3 represent the number of endpoints connected in WPAN 0/2/0 and WPAN 0/3/0.


    Note


    If two WPANs have the same endpoint count, the endpoint count line of the WPAN inserted in higher slot number overlaps the endpoint count line of the WPAN inserted in lower slot number. For example, when two WPANs are connected in slot 3 and slot 1, then the endpoint count line indicating the WPAN inserted in slot 3 overlaps the endpoint count line indicating the WPAN inserted in slot 1. To see the individual endpoint count, click on colour code and the respective line in the chart is removed from the graph.


  • The endpoint hop count chart shows an aggregated endpoint count between the hops connected to both the WPAN interfaces.

Viewing Dual WPAN Events

In the device details page, navigate to Events tab. This tab displays the events and alerts for both WPANs.

For more information on this, see Viewing Events.

Viewing Running Config Tab

In the Running Config tab, both the WPAN related show commands are displayed.

Viewing Mesh Routing Tree

The Mesh Routing Tree tab allows you to select the available WPAN interface for which you want to see the mesh routing table information. For example, if you want to see the mesh routing tree information of WPAN inserted in slot number one, then you must select WPAN0/1/0.


Note


By default, the drop-down list displays the WPAN interface inserted in lower slot number. Therefore, the information pertaining to the respective WPAN is displayed. So, you must select the available WPAN from the drop-down list for which you want to view the information.


Procedure

Step 1

Click Mesh Routing Tree tab in the device details page.

Step 2

Select the required WPAN slot number from the WPAN Interface drop-down list.

The table displays the mesh routing information for the selected WPAN.

The following table describes the fields under Mesh Routing Tree tab in the Device Info page.

Field Description

EID

Element Identifier.

Name

Router EID (Device identifier).

Status

Provides status of device (up/down).

Type

It represents the FAR and endpoint device type.

IP Address

Indicates the IP address of the device.

Last Heard

Last date and time the device contacted IoT FND.

Meter ID

Meter ID of the device.

Transmit Speed (bits/sec)

Indicates the speed (bits/sec) of data transmitted by the interface.

Packet Drops (packets/sec)

Indicates the number of packets dropped (drops/sec).

Receive Speed (bits/sec)

Indicates the speed (bits/sec) of data received by the interface.

RPL Hops (hops)

Number of hops that the element is from the root of its RPL routing tree.

RPL Link Cost (etx)

RPL cost value for the link between the element and its uplink neighbour.

RPL Path Cost (etx)

RPL path cost value between the element and the root of the routing tree.

RSSI

Shows the measured RSSI value of the primary mesh RF uplink (dBm) over time.

Reverse RSSI

RSSI received from the neighbour.

Active Link Type

Determines the most recent active RF or PLC link of a meter.

Note

 

During RPL tree polling, the information is fetched from both WPAN interfaces and processed by FND. For more information on polling, refer to Configuring RPL Tree Polling.

Note

 

For the IR8100 device with CAM module, the RPL tree information is captured from the respective CAM module and displayed in the Mesh Routing Tree tab. The IR8100 device as the root element and the act devices connected to the CAM module are shown.


Viewing Mesh Link Traffic Chart for Dual WPAN

Click Mesh Link Traffic tab in the device details page. Select the WPAN interface from the drop-down list. The chart displays the mesh link metrics per interface based on the selection of all mesh, inbound mesh, outbound mesh, or multicast-unicast mesh traffic button. Click the default or custom-defined time intervals to view charts based on the selection. For more information, see Setting Time Filters To View Charts.


Note


By default, the drop-down list displays the WPAN interface inserted in lower slot number. Therefore, the information pertaining to the respective WPAN is displayed. So, you must select the available WPAN from the drop-down list for which you want to view the information.


Support of Dual WPAN in Device Configuration Page

Choose CONFIG > Device Configuration > ROUTER > Default-Ir8100.

  • Group Members tab—The table is updated with four more columns for representing the user configured parameters such as meshPrefixConfig2, meshPrefixLengthConfig2, meshPanIdConfig2, meshAddressConfig 2 metrics. The existing parameter represents for first WPAN and the parameters with suffix represents the configured parameter for the second WPAN.

  • Edit Configuration Template tab—The page allows you to define user configurable parameters in the template. FND maps the defined parameters to the WPAN parameter value configured through CSV. To configure the user configurable parameters:

    • Navigate to Edit Configuration Template tab.

    • Enter the parameter values in the template and click the disk icon. The WPAN specific user configurable parameters are displayed in the Running Config tab in the device details page as well.


    Note


    You can change device properties by clicking the Change Device Properties button above the devices pane.


  • Export Templates Keys CSV—In the Device Configuration page, click Export Template Keys as CSV button. The WPAN related user configurable parameters are exported in a csv file.

Support of Dual WPAN in Dashboard page

In the dashboard, scroll down to view the Devices with interfaces enabled but down dashlet. Under the interface filter option, both the WPANs are listed. Set the filter with Type as ir8100 and Interface as WPAN x|y|z. FND displays the status of the respective interface. Click on the needle of the gauge chart to show the devices for which the selected interfaces are enabled but down in the Field Devices page. For more information, see Pre-defined Dashlets.

Refreshing Router Mesh Key for Dual WPAN

Refreshing the router mesh key helps to avoid the downtime of devices when they expire. Using the refresh option, you can refresh the IR8100 mesh keys for the following nodes:

Nodes Supported Devices

Fully Functional Nodes (FFN)

IR500 and L+G devices (lgnn and lgelectric).

Limited Functional Nodes (LFN)

Battery endpoints.

Figure 5. Refreshing Mesh Keys for Dual WPAN

Note


IR8100 also supports single WPAN refresh for LFN and FFN keys.

Figure 6. Refreshing Mesh Keys for Single WPAN


Note


FND refreshes the mesh keys automatically when the refresh time is reached.


To refresh the router mesh LFN or FFN keys:

Procedure


Step 1

Navigate to DEVICES > FIELD DEVICES > Browse Devices tab.

Step 2

Select IR8100 router from the left pane.

Step 3

Go to More Actions > Refresh Router Mesh LFN Key (or) Refresh Router Mesh FFN Key.

Alternatively, you can refresh IR8100 mesh keys from the Devices Details page using the Refresh Router Mesh LFN Key button or Refresh Router Mesh FFN Key button.

Step 4

IoT FND refreshes the mesh key for both the WPANs (with different expiration periods) that are inserted in one of the three available slots. A confirmation message appears.

Figure 7. Confirmation Message - LFN
Figure 8. Confirmation Message - FFN

Step 5

Click Yes to continue. The following window displays the status of the router refresh.

Figure 9. Router Refresh Status for LFN
Figure 10. Router Refresh Status for FFN

The key refresh time and key expiration time values are updated under Mesh Link Keys accordingly.


Editing the ENDPOINT Configuration Template

To edit an ENDPOINT configuration template:

Procedure


Step 1

Choose CONFIG > Device Configuration

Step 2

Under CONFIGURATION GROUPS (left pane), select the ENDPOINT group with the template to edit

Step 3

Click Edit Configuration Template.

Step 4

Edit the template.

For example, in the Report Interval field, you can enter the number of seconds between data updates. By default, mesh endpoints send a new set of metrics every 28,800 seconds (8 hours).

You can change the following values on the Edit Configuration Template tab:

  • Report Interval: The number of seconds between data updates.

  • BBU Settings: Enable this option to configure BBU Settings for range extenders with a battery backup unit.

  • Enable Ethernet: Check this check box to enable Ethernet for selected devices or configure NAT 44 settings on selected DA Gateway devices.

Note

 
For NAT 44 configuration, you must specify values for all three fields in a CSV file. The default values are 127.0.0.1, 0, 0, respectively. You do not need to configure any other settings for a particular map index. If these settings are invalid for that map index, they are ignored during a configuration push.
  • MAP-T Settings: The IPv6 and IPv4 settings for the device.

Note

 
For Cisco IOS CGRs, MAP-T rules are set by indicating the MAP-T IPv6 basic mapping rule (BMR), IPv4 BMR, and IPv6 default mapping rule (DMR). On Cisco IR509 devices, the MAP-T IPv6 is an IPv6 prefix that integrates the MAP-T BMR IPv6 rules, IPv4 suffix value, and length being based on the BMR EA length value.
  • Serial Interface 0 (DCE)Settings: The data communications equipment (DCE) communication settings for the selected device.

Note

 
There can be only one session per serial interface. You must configure the following parameters for all TCP Raw Socket sessions (for each virtual line and serial port) for the selected DA Gateway device(s):
  • Initiator – Designates the device as the client/server

  • TCP idle timeout (min) – Sets the time to maintain an idle connection.

  • Local port – Sets the port number of the device

  • Peer port – Sets the port number of the client/server connected to the device.

  • Peer IP address – Sets the IP address of the host connected to the device.

  • Connect timeout – Sets the TCP client connect timeout for Initiator DA Gateway devices.

  • Packet length – Sets the maximum length of serial data to convert into the TCP packet.

  • Packet timer (ms) – Sets the time interval between each TCP packet creation.

  • – Special Character – Sets the delimiter for TCP packet creation.