Using the CFS Infrastructure

Cisco Fabric Services (CFS) provides a common infrastructure for automatic configuration synchronization in the fabric. It provides the transport function as well as a rich set of common services to the applications. CFS has the ability to discover CFS-capable switches in the fabric and discover application capabilities in all CFS-capable switches.

Information About CFS

The Cisco MDS NX-OS software uses the Cisco Fabric Services (CFS) infrastructure to enable efficient database distribution and to foster device flexibility. It simplifies SAN provisioning by automatically distributing configuration information to all switches in a fabric.

Several Cisco MDS NX-OS applications use the CFS infrastructure to maintain and distribute the contents of a particular application’s database.

Many features in the Cisco MDS switches require configuration synchronization in all switches in the fabric. Maintaining configuration synchronization across a fabric is important to maintain fabric consistency. In the absence of a common infrastructure, such synchronization is achieved through manual configuration at each switch in the fabric. This process is tedious and error prone.

Cisco MDS NX-OS Features Using CFS

The following Cisco NX-OS features use the CFS infrastructure:

  • N Port Virtualization
  • FlexAttach Virtual pWWN
  • NTP
  • Dynamic Port VSAN Membership
  • Distributed Device Alias Services
  • IVR topology
  • SAN device virtualization
  • TACACS+ and RADIUS
  • User and administrator roles
  • Port security
  • iSNS
  • Call Home
  • Syslog
  • fctimer
  • SCSI flow services
  • Saved startup configurations using the Fabric Startup Configuration Manager (FSCM)
  • Allowed domain ID lists
  • RSCN timer
  • iSLB

CFS Features

CFS has the following features:

  • Peer-to-peer protocol with no client-server relationship at the CFS layer.
  • Three scopes of distribution.
    • Logical scope—The distribution occurs within the scope of a VSAN.
    • Physical scope—The distribution spans the entire physical topology.
    • Over a selected set of VSANs—Some applications, such as Inter-VSAN Routing (IVR), require configuration distribution over some specific VSANs. These applications can specify to CFS the set of VSANs over which to restrict the distribution.
  • Three modes of distribution.
    • Coordinated distributions—Only one distribution is allowed in the fabric at any given time.
    • Uncoordinated distributions—Multiple parallel distributions are allowed in the fabric except when a coordinated distribution is in progress.
    • Unrestricted uncoordinated distributions—Multiple parallel distributions are allowed in the fabric in the presence of an existing coordinated distribution. Unrestricted uncoordinated distributions are allowed to run in parallel with all other types of distributions.
  • Supports a merge protocol that facilitates the merge of application configuration during a fabric merge event (when two independent fabrics merge).

Enabling CFS for an Application

All CFS-based applications provide an option to enable or disable the distribution capabilities. Features that existed prior to Cisco SAN-OS Release 2.0(1b) have the distribution capability disabled by default and must have distribution capabilities enabled explicitly.

Applications introduced in Cisco SAN-OS Release 2.0(1b) or later, or MDS NX-OS Release 4.1(1) or later have the distribution enabled by default.

The application configuration is not distributed by CFS unless distribution is explicitly enabled for that application.

CFS Protocol

The CFS functionality is independent of the lower layer transport. Currently, in Cisco MDS switches, the CFS protocol layer resides on top of the Fiber Channel 2 (FC2) layer and is peer-to-peer with no client-server relationship. CFS uses the FC2 transport services to send information to other switches. CFS uses a proprietary SW_ILS (0x77434653) protocol for all CFS packets. CFS packets are sent to or from the switch domain controller addresses.

CFS can also use IP to send information to other switches.

Applications that use CFS are completely unaware of the lower layer transport.

CFS Distribution Scopes

Different applications on the Cisco MDS 9000 Family switches need to distribute the configuration at various levels:

  • VSAN level (logical scope)

    Applications that operate within the scope of a VSAN have the configuration distribution restricted to the VSAN. An example application is port security where the configuration database is applicable only within a VSAN.

  • Physical topology level (physical scope)

    Applications might need to distribute the configuration to the entire physical topology spanning several VSANs. Such applications include NTP and DPVM (WWN-based VSAN), which are independent of VSANs.

  • Between selected switches

    Applications might only operate between selected switches in the fabric. An example application is SCSI flow services, which operates between two switches.

CFS Distribution Modes

CFS supports different distribution modes to support different application requirements: coordinated and uncoordinated distributions. Both modes are mutually exclusive. Only one mode is allowed at any given time.

Uncoordinated Distribution

Uncoordinated distributions are used to distribute information that is not expected to conflict with that from a peer. An example is local device registrations such as iSNS. Parallel uncoordinated distributions are allowed for an application.

Coordinated Distribution

Coordinated distributions can have only one application distribution at a given time. CFS uses locks to enforce this. A coordinated distribution is not allowed to start if locks are taken for the application anywhere in the fabric. A coordinated distribution consists of three stages:

  1. A fabric lock is acquired.
  2. The configuration is distributed and committed.
  3. The fabric lock is released.

Coordinated distribution has two variants:

  • CFS driven —The stages are executed by CFS in response to an application request without intervention from the application.
  • Application driven—The stages are under the complete control of the application.

Coordinated distributions are used to distribute information that can be manipulated and distributed from multiple switches, for example, the port security configuration.

Unrestricted Uncoordinated Distributions

Unrestricted uncoordinated distributions allow multiple parallel distributions in the fabric in the presence of an existing coordinated distribution. Unrestricted uncoordinated distributions are allowed to run in parallel with all other types of distributions.

CFS Connectivity in a Mixed Fabric

CFS is an infrastructure component that also runs on the Cisco Nexus 5000 Series switches and the Cisco MDS 9000 switches. A mixed fabric of different platforms (such as the Cisco Nexus 7000 Series, Cisco Nexus 5000 Series, and Cisco MDS 9000 switches) can interact with each other.

Using CFSoIP and CFSoFC, the respective CFS clients can also talk to their instances running on the other platforms. Within a defined domain and distribution scope, CFS can distribute the client’s data and configuration to its peers running on other platforms.

All three platforms support both CFSoIP and CFSoFC. However, the Cisco Nexus 7000 Series and Cisco Nexus 5000 Series switches require an FC or FCoE plugin and corresponding configuration in order for CFSoFC to operate. Both options are available by default on the Cisco MDS 9000 switches.


Note

Some applications are not compatible with their instances running on different platforms. Therefore, Cisco recommends that you carefully read the client guidelines for CFS distribution before committing the configuration.

For more information on CFS for the Cisco Nexus 5000 Series and Cisco MDS 9000 switches, see the Cisco Nexus 5000 Series NX-OS System Management Configuration Guide and the Cisco MDS 9000 Family NX-OS System Management Configuration Guide, respectively.

Locking the Fabric

When you configure (first time configuration) a Cisco NX-OS feature (or application) that uses the CFS infrastructure, that feature starts a CFS session and locks the fabric. When a fabric is locked, the Cisco NX-OS software does not allow any configuration changes from a switch to this Cisco NX-OS feature, other than the switch holding the lock, and issues a message to inform the user about the locked status. The configuration changes are held in a pending database by that application.

If you start a CFS session that requires a fabric lock but forget to end the session, an administrator can clear the session. If you lock a fabric at any time, your user name is remembered across restarts and switchovers. If another user (on the same machine) tries to perform configuration tasks, that user’s attempts are rejected.

For information on verifying CFS lock status, refer to Verifying CFS Lock Status.

Committing Changes

A commit operation saves the pending database for all application peers and releases the lock for all switches.

In general, the commit function does not start a session; only a lock function starts a session. However, an empty commit is allowed if configuration changes are not previously made. In this case, a commit operation results in a session that acquires locks and distributes the current database.

When you commit configuration changes to a feature using the CFS infrastructure, you receive a notification about one of the following responses:

  • One or more external switches report a successful status—The application applies the changes locally and releases the fabric lock.
  • None of the external switches report a successful state—The application considers this state a failure and does not apply the changes to any switch in the fabric. The fabric lock is not released.

Note

Once the feature commit is done the running configuration has been modified on all switches participating in the feature's distribution. You can then use the copy running-config startup-config fabric command to save the running-config to the startup-config on all the switches in the fabric.

CFS Merge Support

An application keeps the configuration synchronized in a fabric through CFS. Two such fabrics might merge as a result of an ISL coming up between them. These two fabrics could have two different sets of configuration information that need to be reconciled in the event of a merge. CFS provides notification each time an application peer comes online. If a fabric with M application peers merges with another fabric with N application peers and if an application triggers a merge action on every such notification, a link-up event results in M*N merges in the fabric.

CFS supports a protocol that reduces the number of merges required to one by handling the complexity of the merge at the CFS layer. This protocol runs per application per scope. The protocol involves selecting one switch in a fabric as the merge manager for that fabric. The other switches do not play any role in the merge process.

During a merge, the merge manager in the two fabrics exchange their configuration databases with each other. The application on one of them merges the information, decides if the merge is successful, and informs all switches in the combined fabric of the status of the merge.

In case of a successful merge, the merged database is distributed to all switches in the combined fabric and the entire new fabric remains in a consistent state.

CFS Distribution over IP

You can configure CFS to distribute information over IP for networks containing switches that are not reachable over Fibre Channel. CFS distribution over IP supports the following features:

  • Physical distribution over an entirely IP network.

  • Physical distribution over a hybrid Fibre Channel and IP network with the distribution reaching all switches that are reachable over either Fibre Channel or IP.


Note

The switch attempts to distribute information over Fibre Channel first and then over the IP network if the first attempt over Fibre Channel fails. CFS does not send duplicate messages if distribution over both IP and Fibre Channel is enabled.
  • Distribution over IP version 4 (IPv4) or IP version 6 (IPv6).


Note

CFS cannot distribute over both IPv4 and IPv6 from the same switch.
  • Keepalive mechanism to detect network topology changes using a configurable multicast address.

  • Compatibility with Cisco MDS SAN-OS Release 2.x.

  • Distribution for logical scope applications is not supported because the VSAN implementation is limited to Fibre Channel.

Figure 1 shows a network with both Fibre Channel and IP connections. Node A forwards an event to node B over Fibre Channel. Node B forwards the event node C and node D using unicast IP. Node C forwards the event to node E using Fibre Channel.

Figure 1. Network Example 1 with Fibre Channel and IP Connections

Figure 2 is the same as Figure 1 except that node D and node E are connected using Fibre Channel. All processes is the same in this example because node B has node C and node D the distribution list for IP. Node C does not forward to node D because node D is already in the distribution list from node B.

Figure 2. Network Example 2 with Fibre Channel and IP Connections

Figure 3 is the same as Figure 2 except that node D and node E are connected using IP. Both node C and node D forward the event to E because the node E is not in the distribution list from node B.

Figure 3. Network Example 3 with Fibre Channel and IP Connections

Static IP Peers for CFS

CFS over IP can also be used with static IP peers. In this case, dynamic discovery over IP multicast is disabled and CFS distribution is done only on the peers configured statically.

CFS uses the list of configured IP addresses to communicate with each peer and learn the peer switch WWN. After learning the peer switch WWN, CFS marks the switch as CFS-capable and triggers application-level merging and database distribution.

Multicast forwarding is disabled by default in some devices. For example, the IBM Blade chassis has multicast forwarding disabled, especially on external Ethernet ports, and there is no method to enable it. N port virtualization devices use only IP as the transport medium and do not have ISL connectivity or a Fibre Channel domain. Such devices may benefit from using static IP peers for CFS.

The following MDS 9000 features require static IP peer configuration for CFS over IP distribution:

  • N port virtualization devices have IP as the communication channel because NPV switches do not have FC domain. NPV devices use CFS over IP as the transport medium.
  • FlexAttach virtual pWWN distribution on CFS region 201 that links only the NPV-enabled switches.

About CFS Regions

A CFS region is a user-defined subset of switches for a given feature or application in its physical distribution scope.When a SAN is spanned across a vast geography, you may need to localize or restrict the distribution of certain profiles among a set of switches based on their physical proximity. Before MDS SAN-OS Release 3.2.(1) the distribution scope of an application within a SAN was spanned across the entire physical fabric without the ability to confine or limit the distribution to a required set of switches in the fabric. CFS regions enables you to overcome this limitation by allowing you to create CFS regions, that is, multiple islands of distribution within the fabric, for a given CFS feature or application. CFS regions are designed to restrict the distribution of a feature’s configuration to a specific set or grouping of switches in a fabric.


Note

You can only configure a CFS region on physical switches in a SAN. You cannot configure a CFS region in a VSAN.

Example CFS Scenario : Call Home is an application that triggers alerts to Network Administrators when a situation arises or something abnormal occurs. When the fabric covers many geographies and with multiple Network Administrators who are each responsible for a subset of switches in the fabric, the Call Home application sends alerts to all Network Administrators regardless of their location. For the Call Home application to send message alerts selectively to Network Administrators, the physical scope of the application has to be fine tuned or narrowed down, which is achieved by implementing CFS regions.

CFS regions are identified by numbers ranging from 0 through 200. Region 0 is reserved as the default region, and contains every switch in the fabric. You can configure regions from 1 through 200. The default region maintains backward compatibility. If there are switches on the same fabric running releases of SAN-OS before Release 3.2(1), only features in Region 0 are supported when those switches are synchronized. Features from other regions are ignored when those switches are synchronized.

If the feature is moved, that is, assigned to a new region, its scope is restricted to that region; it ignores all other regions for distribution or merging purposes. The assignment of the region to a feature has precedence in distribution over its initial physical scope.

You can configure a CFS region to distribute configurations for multiple features. However, on a given switch, you can configure only one CFS region at a time to distribute the configuration for a given feature. Once you assign a feature to a CFS region, its configuration cannot be distributed within another CFS region.

Guidelines and Limitations

All switches in the fabric must be CFS capable. A Cisco MDS 9000 Family switch is CFS capable if it is running Cisco SAN-OS Release 2.0(1b) or later, or MDS NX-OS Release 4.1(1) or later. Switches that are not CFS capable do not receive distributions and result in part of the fabric not receiving the intended distribution.

CFS has the following guidelines and limitations:

  • Implicit CFS usage—The first time you issue a CFS task for a CFS-enabled application, the configuration modification process begins and the application locks the fabric.
  • Pending database—The pending database is a temporary buffer to hold uncommitted information. The uncommitted changes are not applied immediately to ensure that the database is synchronized with the database in the other switches in the fabric. When you commit the changes, the pending database overwrites the configuration database (also known as the active database or the effective database).
  • CFS distribution enabled or disabled on a per-application basis—The default (enable or disable) for CFS distribution state differs between applications. If CFS distribution is disabled for an application, then that application does not distribute any configuration nor does it accept a distribution from other switches in the fabric.
  • Explicit CFS commit—Most applications require an explicit commit operation to copy the changes in the temporary buffer to the application database, to distribute the new database to the fabric, and to release the fabric lock. The changes in the temporary buffer are not applied if you do not perform the commit operation.

Default Settings

Table 1 lists the default settings for CFS configurations.

Table 1. Default CFS Parameters

Parameters

Default

CFS distribution on the switch

Enabled.

Database changes

Implicitly enabled with the first configuration change.

Application distribution

Differs based on application.

Commit

Explicit configuration is required.

CFS over IP

Disabled.

Static IP Peers for CFS

Disabled.

IPv4 multicast address

239.255.70.83

IPv6 multicast address

ff15:efff:4653

Configuring CFS

This section describes the configuration process.

Disabling CFS Distribution on a Switch

By default, CFS distribution is enabled. Applications can distribute data and configuration information to all CFS-capable switches in the fabric where the applications exist. This is the normal mode of operation.

You can globally disable CFS on a switch, including CFS over IP to isolate the applications using CFS from fabric-wide distributions while maintaining physical connectivity.


Note

When CFS is globally disabled on a switch, CFS operations are restricted to the switch and all CFS commands continue to function as if the switch were physically isolated.


To globally disable or enable CFS distribution on a switch, follow these steps:

Procedure


Step 1

switch# configure terminal

Enters configuration mode.

Step 2

switch(config)# no cfs distribute

Globally disables CFS distribution for all applications on the switch, including CFS over IP.

Step 3

switch(config)# cfs distribute

Enables (default) CFS distribution on the switch.


Committing Changes

You can commit changes for a specified feature by entering the commit command for that feature.

Discarding Changes

If you discard configuration changes, the application flushes the pending database and releases locks in the fabric. Both the abort and commit functions are only supported from the switch from which the fabric lock is acquired.

You can discard changes for a specified feature by using the abort command for that feature.

Saving the Configuration

Configuration changes that have not been applied yet (still in the pending database) are not shown in the running configuration. The configuration changes in the pending database overwrite the configuration in the effective database when you commit the changes.


Caution

If you do not commit the changes, they are not saved to the running configuration.


The CISCO-CFS-MIB contains SNMP configuration information for any CFS-related functions. Refer to the Cisco MDS 9000 Family MIB Quick Reference for more information on this MIB.

Clearing a Locked Session

You can clear locks held by an application from any switch in the fabric. This option is provided to rescue you from situations where locks are acquired and not released.

The clear the CFS locks, follow these steps:

Procedure


Step 1

switch# configure terminal

Enters configuration mode.

Step 2

switch(config)# dpvm abort

Aborts the configuration from the switch where the configuration lock was acquired previously. This method clears the CFS locks in the entire fabric.

Clears the CFS locks for the DPVM application in the entire fabric.

Step 3

switch(config)# clear dpvm session

Clears the sessions from any switch in the fabric.

Clears the CFS locks for the DPVM application.


Enabling CFS over IP

Enabling or Disabling CFS over IPv4

To enable or disable CFS over IPv4, follow these steps:

Procedure


Step 1

switch# configure terminal

Enters configuration mode.

Step 2

switch(config)# cfs ipv4 distribute

Globally enables CFS over IPv4 for all applications on the switch.

Step 3

switch(config)# no cfs ipv4 distribute


This will prevent CFS from distributing over IPv4 network.
Are you sure? (y/n) [n] y

Disables (default) CFS over IPv4 on the switch.

Enabling or Disabling CFS Over IPv6

To enable or disable CFS over IPv6, follow these steps:

Procedure


Step 1

switch# configure terminal

Enters configuration mode.

Step 2

switch(config)# cfs ipv6 distribute

Globally enables CFS over IPv6 for all applications on the switch.

Step 3

switch(config)# no cfs ipv6 distribute

Disables (default) CFS over IPv6 on the switch.


Configuring IP Multicast Address for CFS over IP

All CFS over IP enabled switches with similar multicast addresses form one CFS over IP fabric. CFS protocol specific distributions, such as the keepalive mechanism for detecting network topology changes, use the IP multicast address to send and receive information.


Note

CFS distributions for application data use directed unicast.

You can configure a CFS over IP multicast address value for either IPv4 or IPv6. The default IPv4 multicast address is 239.255.70.83 and the default IPv6 multicast address is ff15:efff:4653.

Configuring IP Multicast Address for CFS over IPv4

To configure an IP multicast address for CFS over IPv4, follow these steps:

Procedure

Step 1

switch# configure terminal

Enters configuration mode.

Step 2

switch(config)# cfs ipv4 mcast-address 239.255.1.1


Distribution over this IP type will be affected
Change multicast address for CFS-IP ?

Configures the IPv4 multicast address for CFS distribution over IPv4. The ranges of valid IPv4 addresses are 239.255.0.0 through 239.255.255.255 and 239.192/16 through 239.251/16.

Step 3

switch(config)# no cfs ipv4 mcast-address 239.255.1.1

Example:

Distribution over this IP type will be affected
Change multicast address for CFS-IP ?Are you sure? (y/n)  [n] y

Reverts to the default IPv4 multicast address for CFS distribution over IPv4. The default IPv4 multicast address for CFS is 239.255.70.83.


Configuring IP Multicast Address for CFS over IPv6

To configure an IP multicast address for CFS over IPv6, follow these steps:

Procedure

Step 1

switch# configure terminal

Enters configuration mode.

Step 2

switch(config)# cfs ipv6 mcast-address ff15::e244:4754


Distribution over this IP type will be affected
Change multicast address for CFS-IP ?
Are you sure? (y/n)  [n] y

Configures the IPv6 multicast address for CFS distribution over IPv6. The range of valid IPv6 addresses is ff15::/16 (ff15::0000:0000 through ff15::ffff:ffff) and ff18::/16 (ff18::0000:0000 through ff18::ffff:ffff).

Step 3

switch(config)# no cfs ipv6 mcast-address ff15::e244:4754


Distribution over this IP type will be affected
Change multicast address for CFS-IP ?
Are you sure? (y/n)  [n] y

Reverts to the default IPv6 multicast address for CFS distribution over IPv6. The default IPv6 multicast address for CFS over IP is ff15::efff:4653.


Configuring Static IP Peers for CFS

To configure a static IP peer address for CFS over IP, follow these steps:

Procedure


Step 1

switch# configure terminal

Enters configuration mode.

Step 2

switch(config)# cfs static-peers


WARNING: This mode will stop dynamic discovery and rely only on the static peers. For this mode to be in effect, at least one static peer will need to be configured.
Do you wish to continue? (y/n)  [n] y

switch(config-cfs-static)#

Enters CFS static peers configuration mode and disables dynamic discovery of peers using multicast forwarding. For this to take effect, at least one static peer needs to be configured in Step 3.

Step 3

switch(config)# no cfs static-peers


WARNING: This will remove all existing peers and start dynamic discovery.
Do you wish to continue? (y/n)  [n] y

Disables CFS static peer discovery and enables dynamic peer discovery using multicast forwarding on all switches.

Step 4

switch(config-cfs-static)# ip address 1.2.3.4

switch(config-cfs-static)#ip address 1.2.3.5

switch(config-cfs-static)# end

switch#

Adds the IP address to the static peers list and marks the switch as CFS-capable. To display the static IP peers list, use the show cfs static peers command.

Step 5

switch(config-cfs-static)# no ip address 1.2.3.3

switch(config-cfs-static)# end

Removes the IP address from the static peers list and moves the switch to dynamic peer discovery using multicast forwarding.

Step 6

switch# show cfs static peers

Displays the IP address, WWN, and the status of CFS static peer request:

  • Discovery Inprogress
  • Local
  • Reachable
  • Unreachable
  • Local IP not present
  • Rediscovery and distribution disabled
Note 
The IP address and WWN must be configured on the local switch. If CFS does not receive the local switch information, then CFS cannot start any discovery for peer switches.

Configuring CFS Regions

Creating CFS Regions

To create a CFS region, perform this task:

Procedure


Step 1

switch# configure terminal

Enters configuration mode.

Step 2

switch(config)# cfs region 4

Creates a region, for example, number 4.


Assigning Applications to CFS Regions

To assign an application on a switch to a region, perform this task:

Procedure


Step 1

switch# configure terminal

Enters configuration mode.

Step 2

switch(config)# cfs region 4

Creates a region, for example, number 4.

Step 3

switch(config-cfs-region)# ntp

switch(config-cfs-region)# callhome

Adds application(s).


Moving an Application to a Different CFS Region

You can move an application to a different CFS region, for example from Region 1 (originating region) with NTP and Call Home applications to Region 2 (target region).

To move an application, perform this task:

Procedure


Step 1

switch# configure terminal

Enters configuration mode.

Step 2

switch(config)# cfs region 2

Enters Region 2.

Step 3

switch(config-cfs-region)# ntp

switch(config-cfs-region)# callhome

Indicates application(s) to be moved into Region 2 that originally belong to Region 1. For example, here, the NTP and Call Home applications are moved to Region 2.

Note 
If you try adding an application to the same region more than once, you see the error message, “Application already present in the same region.”

Removing an Application from a Region

Removing an application from a region is the same as moving the application back to the default region or to Region 0, that is, bringing the entire fabric into the scope of distribution for the application.

To remove applications from Region 1, perform this task:

Procedure


Step 1

switch# configure terminal

Enters configuration mode.

Step 2

switch(config)# cfs region 1

Enters Region 1.

Step 3

switch(config-cfs-region)# no ntp

switch(config-cfs-region)# no callhome

Removes application(s) that belong to Region 1, which you want to move.


Deleting CFS Regions

Deleting a region is nullifying the region definition. All the applications bound by the region are released back to the default region by deleting that region.

To delete a region (for example, a region numbered 4), perform this task:

Procedure


Step 1

switch# configure terminal

Enters configuration mode.

Step 2

switch(config)# no cfs region 4

Example:


WARNING: All applications in the region wiil be  moved to default region.
Are you sure? (y/n)  [n]

Deletes the Region 4.

Note 
After Step 2, you see the warning, “All the applications in the region will be moved to the default region.”

Verifying CFS Configurations

To display the CFS configuration information, perform one of the following tasks:

Command

Purpose

show cfs status

Displays the status of CFS distribution on the switch.

show cfs application

Displays the applications that are currently registered with CFS.

show cfs lock

Displays all the locks that are currently acquired by any application.

show cfs status

Verifies the CFS over IP configuration.

show cfs region brief

Displays brief information about the CFS regions.

show cfs region

Displays detailed information about the CFS regions.

For detailed information about the fields in the output from these commands, refer to the Cisco MDS 9000 Family Command Reference .

Verifying CFS Distribution Status

The show cfs status command displays the status of CFS distribution on the switch.


switch# show cfs status
Distribution : Enabled
Distribution over IP : Disabled
IPv4 multicast address : 239.255.70.83
IPv6 multicast address : ff15::efff:4653

Verifying Application Registration Status

The show cfs application command displays the applications that are currently registered with CFS. The first column displays the application name. The second column indicates whether the application is enabled or disabled for distribution (enabled or disabled). The last column indicates the scope of distribution for the application (logical, physical, or both).


Note

The show cfs application command only displays applications registered with CFS. Conditional services that use CFS do not appear in the output unless these services are running.

switch# show cfs application
----------------------------------------------
 Application    Enabled   Scope
----------------------------------------------
 ntp            No        Physical-fc-ip
 fscm           Yes       Physical-fc
 role           No        Physical-fc-ip
 rscn           No        Logical
 radius         No        Physical-fc-ip
 fctimer        No        Physical-fc
 syslogd        No        Physical-fc-ip
 callhome       No        Physical-fc-ip
 fcdomain       No        Logical
 fc-redirect    Yes       Physical-fc
 device-alias   Yes       Physical-fc
Total number of entries = 11

The show cfs application name command displays the details for a particular application. It displays the enabled/disabled state, timeout as registered with CFS, merge capability (if it has registered with CFS for merge support), and the distribution scope.


switch# show cfs application name ntp
 Enabled        : Yes
 Timeout        : 5s
 Merge Capable  : Yes
 Scope          : Physical
 Region 				: Default

Verifying CFS Lock Status

The show cfs lock command displays all the locks that are currently acquired by any application. For each application the command displays the application name and scope of the lock taken. If the application lock is taken in the physical scope, then this command displays the switch WWN, IP address, user name, and user type of the lock holder. If the application is taken in the logical scope, then this command displays the VSAN in which the lock is taken, the domain, IP address, user name, and user type of the lock holder.


switch# show cfs lock
Application: ntp
Scope      : Physical
--------------------------------------------------------------------
 Switch WWN               IP Address       User Name    User Type
--------------------------------------------------------------------
 20:00:00:05:30:00:6b:9e  10.76.100.167    admin        CLI/SNMP v3
 Total number of entries = 1
Application: port-security
Scope      : Logical
-----------------------------------------------------------
 VSAN   Domain   IP Address       User Name    User Type
-----------------------------------------------------------
 1      238      10.76.100.167    admin        CLI/SNMP v3
 2      211      10.76.100.167    admin        CLI/SNMP v3
 Total number of entries = 2


The show cfs lock name command displays the lock details similar for the specified application.

Lock Information for the Specified Application


switch# show cfs lock name ntp
Scope      : Physical
--------------------------------------------------------------------
 Switch WWN               IP Address       User Name    User Type
--------------------------------------------------------------------
 20:00:00:05:30:00:6b:9e  10.76.100.167    admin        CLI/SNMP v3
 Total number of entries = 1

Verifying the CFS over IP Configuration

To verify the CFS over IP configuration, use the show cfs status command.


switch# show cfs status
Distribution : Enabled
Distribution over IP : Disabled
IPv4 multicast address : 239.255.70.83
IPv6 multicast address : ff15::efff:4653

Verifying IP Multicast Address Configuration for CFS over IP

To verify the IP multicast address configuration for CFS over IP, use the show cfs status command.


switch# show cfs status
Fabric distribution Enabled
IP distribution Enabled mode ipv4
IPv4 multicast address : 10.1.10.100 
IPv6 multicast address : ff13::e244:4754

Verifying Static IP Peer Configuration

To verify the IP peer configuration, use the show cfs status command.


switch# show cfs status
Distribution: Enabled
Distribution over IP: Enabled - mode IPv4 (static)
IPv4 multicast address : 239:255:70:83
IPv6 multicast address : ff15::efff:4563

To display the status of static IP peers discovery, use the show cfs static peers command.


switch# show cfs static peers
-------------------------------------------------------------
IP Address     WWN                         Status         
-------------------------------------------------------------
192.0.2.4     00:00:00:00:00:00:00:00      Discovery in progress
192.0.2.5     20:00:00:0d:ec:06:55:b9      Reachable
192.0.2.6     20:00:00:0d:ec:06:55:c0      Local

Verifying CFS Regions

To display the CFS regions, perform this task:

Procedure


Step 1

switch# configure terminal

Enters configuration mode.

Step 2

switch(config)# show cfs region brief

Displays brief information about the CFS regions.

Step 3

switch(config)# show cfs region

Displays detailed information about the CFS regions.

Note 
To successfully form CFS peer you may configure common mcast IP on two different switches which are connected to two different management switches.

Additional References

For additional information related to implementing CFS, see the following section:

MIBs

MIBs

MIBs Link

  • CISCO-CFS-CAPABILITY-MIB
  • CISCO-CFS-MIB

To locate and download MIBs, go to the following URL:

http://www.cisco.com/en/US/products/ps5989/prod_technical_reference_list.html